

10 August 2011

Programmer Reference

Rights and Trademarks I-QU PLUS-1 Programmer Reference

ii KMSYS Worldwide, Inc.

The information contained in this document is the latest available at the time of

preparation; therefore, it may be changed without notice, and it does not represent a

commitment on the part of KMSYS Worldwide, Inc. The software described in this

document is furnished under a license agreement. The software may be used or copied only

in accordance with the terms of the agreement. It is against the law to copy this software

on magnetic tape, disk, or any other medium for any purpose other than stated in the terms

of the agreement, or without the express written permission of KMSYS Worldwide, Inc.

©Copyright 1985-2008 by KMSYS Worldwide, Inc. All rights reserved.

This material constitutes proprietary and confidential property of KMSYS Worldwide, Inc.,

having substantial monetary value and is solely the property of KMSYS Worldwide, Inc. This

property is disclosed to the recipient thereof in confidence only and pursuant to the terms

and conditions and for the purpose set forth in written agreements by and between KMSYS

Worldwide, Inc., and the recipient of this material.

If you have any comments about the software or documentation, notify KMSYS Worldwide,

Inc., in writing at the following address:

KMSYS Worldwide, Inc.
P.O. Box 669695

Marietta, Georgia 30066
U.S.A.

Technical Support (770) 635-6363 - Main Number (770) 635-6350 - Fax (770) 635-6351

I-QU PLUS-1 Release 11R6, November 1999

eQuate, Host Gateway Server, I-QU PLUS-1, I-QU ReorgComposer, InfoQuest, InfoQuest

Client, Q-LINK, QPlex, QPlexView, T27 eXpress IT, T27 eXpress Net, T27 eXpress Plus, T27

eXpress Pro, UTS eXpress IT, UTS eXpress Net, UTS eXpress Plus, UTS eXpress Pro and

WinQ are trademarks or registered trademarks of KMSYS Worldwide, Inc. Microsoft,

Windows, Visual Basic and Visual C++ are trademarks or registered trademarks of Microsoft

Corporation in the United States and/or other countries. Delphi is a trademark of Borland

International. Sperry, Unisys, UTS, UNISCOPE and BIS are trademarks of Unisys

Corporation. Enable is a trademark of Cypress Software, Inc. All other trademarks and

registered trademarks are the property of their respective owners.

RESTRICTED RIGHTS LEGEND

If this Product is acquired by or for the U.S. Government, then it is provided with Restricted

Rights. Use, duplication or disclosure by the U.S. Government is subject to restrictions as

set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software

clause at DFARS 252.227-7013, or subparagraphs (c)(1) and (2) of the Commercial

Computer Software - Restricted Rights at 48 CFR 52.227-19, or clause 18-52.227-86(d) of

the NASA Supplement to the FAR, as applicable.

I-QU PLUS-1 Programmer Reference Contents

iii KMSYS Worldwide, Inc.

Table of Contents
Chapter 1: Introduction.. 1-1

1.1 Description of Chapters .. 1-1

1.2 Additional Documentation .. 1-2

1.3 Syntax Notation .. 1-2

Chapter 2: General Information ... 2-1

2.1 Basic Structure ... 2-1

2.2 Modes of Operation ... 2-1

2.3 Commands vs. Directives .. 2-1

2.4 Command Line Format ... 2-2

2.5 File Systems Accessed by I-QU PLUS-1 .. 2-3

Chapter 3: Internal Structure ... 3-1

3.1 Record Delivery Area (RDA) ... 3-1
3.1.1 Direct RDA Reference .. 3-1
3.1.2 Item Name RDA Reference .. 3-4
3.1.3 RDA Indexing and Subscripting .. 3-4
3.1.4 Variable RDA Referencing .. 3-5

3.2 Variable Data Storage Area (DSA) ... 3-6

3.3 Object Program Area ... 3-6

Chapter 4: Processor Call Format ... 4-1

Chapter 5: Defining Variables ... 5-1

5.1 Alphanumeric String Variables (DEFINE A) ... 5-1

5.2 Decimal Numeric Variables (DEFINE N) .. 5-1

5.3 Floating Point Numeric Variables (DEFINE FP) ... 5-2

5.4 Kanji Variables (DEFINE K) ... 5-2

Chapter 6: Reserved Words .. 6-1

6.1 Reserved Variables .. 6-1

6.2 Special Names .. 6-4

Chapter 7: Record Delivery Area (RDA) .. 7-1

7.1 Alternate Record Area Definition (DEFINE RA) .. 7-1

7.2 Record Delivery Area Field Definition (DEFINE RDA) .. 7-3

7.3 Subscript Variable Definition (DEFINE SUB) .. 7-4

Chapter 8: Control Directives ... 8-1

8.1 ADD .. 8-1

8.2 CLEAR ... 8-1

8.3 COMPILE .. 8-1

8.4 CONV .. 8-2

8.5 EXIT .. 8-2

8.6 INDEX ... 8-2

8.7 INIT .. 8-2

8.8 INPUT .. 8-2

8.9 LISTOFF ... 8-2

8.10 LISTON .. 8-3

8.11 LOAD ... 8-3

8.12 OBJECT .. 8-3

Contents I-QU PLUS-1 Programmer Reference

iv KMSYS Worldwide, Inc.

8.13 PRINTER .. 8-3

8.14 RUN... 8-3

8.15 SAVE ... 8-4

8.16 ? ... 8-4

8.17 Object Program Considerations ... 8-5

Chapter 9: General Procedural Commands ... 9-1

9.1 ACCEPT ... 9-2

9.2 BITMERGE .. 9-3

9.3 BITSPLIT .. 9-4

9.4 BREAK ... 9-5

9.5 CASE ... 9-6

9.6 CLEARSCREEN .. 9-7

9.7 CONNECT ... 9-8

9.8 CSF ... 9-9

9.9 DATE ... 9-10

9.10 DATESET .. 9-12

9.11 DECIMAL .. 9-17

9.12 DISCONNECT .. 9-18

9.13 DISPLAY... 9-19

9.14 DO .. 9-21

9.15 DUMP .. 9-23

9.16 EDIT .. 9-24

9.17 FACERR.. 9-27

9.18 GO .. 9-28

9.19 IF .. 9-29

9.20 PCONTROL ... 9-31

9.21 ROUND .. 9-33

9.22 SCAN ... 9-34

9.23 SET ... 9-36

9.24 SHIFT .. 9-41

9.25 STOP ... 9-42

9.26 SWGET .. 9-43

9.27 SWSET ... 9-44

9.28 TABS ... 9-45

9.29 TIME .. 9-46

9.30 TRACE ... 9-47

9.31 TRANSFER .. 9-48

9.32 TRIMDISP... 9-49

9.33 TRIMEDIT ... 9-50

9.34 WAIT ... 9-51

9.35 WILDCARD ... 9-52

Chapter 10: PCIOS and SFS 2200 File Interface 10-1

10.1 PCIOS/SFS File Usage and Access Modes ... 10-2

10.2 PCIOS/SFS File Definition (DEFINE F) .. 10-3

10.3 CDELETE .. 10-6

10.4 CLOSE ... 10-7

I-QU PLUS-1 Programmer Reference Contents

v KMSYS Worldwide, Inc.

10.5 OPEN ... 10-8

10.6 READ ... 10-10

10.7 READNEXT ... 10-11

10.8 REWRITE .. 10-12

10.9 START ... 10-13

10.10 WRITE ... 10-14

10.11 Special PCIOS Status Returned ... 10-15

Chapter 11: SORT Interface ... 11-1

11.1 RELEASE .. 11-2

11.2 RETURN ... 11-3

11.3 SORT ... 11-4

Chapter 12: DMS 2200 Interface .. 12-1

12.1 Subschema Invocation (INVOKE) .. 12-1

12.2 INVOKE Considerations .. 12-3

12.3 DMS 2200 CALC Routine Definition (DEFINE C) ... 12-4

12.4 DBDUMP File ... 12-6
12.4.1 DBDUMP File Definition (DEFINE F) .. 12-6
12.4.2 CLOSE (DBDUMP) .. 12-7
12.4.3 OPEN (DBDUMP).. 12-8
12.4.4 READ (DBDUMP) ... 12-9
12.4.5 WRITE (DBDUMP) .. 12-10

12.5 DML Commands .. 12-11

12.6 ACQUIRE .. 12-12

12.7 CALSIM .. 12-14

12.8 CLOSE ... 12-15

12.9 DELETE .. 12-16

12.10 DEPART .. 12-17

12.11 DISPLAY Database Error ... 12-18

12.12 FETCH/FIND ... 12-19
12.12.1 FETCH/FIND Format-1 .. 12-19
12.12.2 FETCH/FIND Format-2 .. 12-20
12.12.3 FETCH/FIND Format-3 .. 12-21
12.12.4 FETCH/FIND Format-4 .. 12-22
12.12.5 FETCH/FIND Format-5 .. 12-23
12.12.6 FETCH/FIND Format-6 .. 12-24
12.12.7 FETCH/FIND Format-7 .. 12-25

12.13 FREE .. 12-26

12.14 IF (DML)... 12-27

12.15 IMPART .. 12-28

12.16 INSERT .. 12-29

12.17 KEEP .. 12-30

12.18 MODIFY .. 12-31

12.19 OPEN ... 12-32

12.20 REMOVE ... 12-33

12.21 SET CURRENT ... 12-34

12.22 SET DBDN (Database Data Name) ... 12-36

12.23 SET NON-FATAL (DML Errors) ... 12-37

Contents I-QU PLUS-1 Programmer Reference

vi KMSYS Worldwide, Inc.

12.24 STORE ... 12-38

12.25 SUPPRESS Clause .. 12-39

Chapter 13: Direct I/O Access .. 13-1

13.1 DIO (DEFINE F) .. 13-1

13.2 DIO ... 13-2

Chapter 14: RDMS 2200 Interface .. 14-1

14.1 The RDMS Command ... 14-2

14.2 The RDMS+ Command ... 14-4

14.3 Automated RDA Definitions ... 14-5

Chapter 15: BIS DTM Interface .. 15-1

15.1 Queue-alias Definition (DEFINE F) ... 15-1

15.2 Alternate Queue-alias Areas (DEFINE RA) ... 15-3

15.3 CLOSE ... 15-4

15.4 OPEN ... 15-5

15.5 READ ... 15-6

15.6 WRITE ... 15-7

Chapter 16: Command and Keyword Abbreviations 16-1

Chapter 17: DBDUMP File Description .. 17-1

Chapter 18: QINDEX Reference .. 18-1

18.1 Introduction ... 18-1

18.2 QINDEX, General Information ... 18-2
18.2.1 Input to QINDEX ... 18-2
18.2.2 Output of QINDEX ... 18-2

18.3 Running QINDEX ... 18-3
18.3.1 QINDEX Processor Options .. 18-3
18.3.2 QINDEX Directives ... 18-3

18.4 Building an Application Definition .. 18-6

18.5 Example ... 18-7

Tables

Table 3-1: Data Types ... 3-2

Table 3-2: Computational Field Byte Lengths .. 3-3

Table 10-1: File Usage/Access Modes .. 10-2

Table 16-1: Keyword Abbreviations ... 16-1

Table 18-1: QINDEX Data Allocations .. 18-6

I-QU PLUS-1 Programmer Reference Preface

vii KMSYS Worldwide, Inc.

Preface

This manual contains technical information regarding the use of the I-QU PLUS-1 processor.

This manual is directed to programming and database administrative personnel. The

manual contains information necessary to use the I-QU PLUS-1 processor interactively or to

write I-QU PLUS-1 programs.

For those sites that are migrating from earlier release levels of I-QU PLUS-1, please read

the I-QU PLUS-1 README.TXT file on the Documentation CD from KMSYS Worldwide prior to

executing existing I-QU PLUS-1 programs. Some of the differences described in that

document may effect the I-QU PLUS-1 operating environment at your site.

Any I-QU PLUS-1 programs SAVEd in object form with earlier released levels of I-QU PLUS-1

must be recompiled to execute under this released level. KMSYS Worldwide, Inc., provides

an SSG routine called “COMPILE-RUNS” which will automatically recompile all I-QU PLUS-1

programs. This routine can be found in the second I-QU PLUS-1 product file,

SYSLIB*IQU-1 (default mode install). For other modes of installation, refer to the

COMUS SRL after COMUS product registration.

With DMS-1100, level 9R1 or higher, the term, “DMR”, is no longer used. Instead, Unisys

documentation now refers to a logical data manager (LDM) for DMS running under Universal

Data System (UDS) Control. I-QU PLUS-1 can interface with any number of LDMs through

UDS Control. However, this documentation will continue to use the term, “DMR”, in a

generic fashion since I-QU PLUS-1 can interface with non-UDS DMS applications (e.g., 8R3)

as well as DMS applications running under UDS Control.

I-QU PLUS-1 Programmer Reference Introduction

1-1 KMSYS Worldwide, Inc.

Chapter 1: Introduction

I-QU PLUS-1 is a high level, multi-mode database manipulation processor. I-QU PLUS-1 has

been designed to give the programmer or analyst the ability to interactively retrieve,

display, add, change and delete data in a multi-file system environment using simple

procedural commands. This data can be accessed in a DMS 2200 database, standard PCIOS

files, TIP/FCSS files, RDMS 2200 database tables and BIS reports via the DTM interface.

The user may also write I-QU PLUS-1 command language programs for performing data

manipulation or for producing lists and summaries without having to use compilers or

collectors.

I-QU PLUS-1 is especially useful in systems development because of its ability to display,

load, modify or dump data. Program test results can be easily verified after testing

COBOL/DML or standard COBOL programs, without the need to write additional COBOL

programs. Data can be written to PCIOS files from a test database, and used to refresh the

database when needed, using I-QU PLUS-1 command language programs. I-QU PLUS-1 can

be used in the production of ad hoc reports using its flexible output formatting commands.

I-QU PLUS-1 has an optional function that provides the more technical user with a powerful

database reorganization utility package. An important feature of I-QU PLUS-1, when the

optional I-QU PLUS-1 extensions are included, is its set of powerful DMS 2200 database

pointer manipulation commands. These commands are designed to be used in conjunction

with a group of special database reorganization utilities to speed up and simplify large scale

database reorganizations.

1.1 Description of Chapters

Chapter 1 contains an introduction to the I-QU PLUS-1 processor, a summary of each

chapter of the Programmer Reference and the rules for its use.

Chapter 2 contains general information regarding the basic structure of the I-QU PLUS-1

processor, its operation modes, its file systems’ interfaces.

Chapter 3 describes how the I-QU PLUS-1 Processor is organized internally. It also contains

the rules by which data items may be referenced in an I-QU PLUS-1 program or session.

Chapter 4 lists the I-QU PLUS-1 Processor call options and format.

Chapter 5 describes the types of user-defined variables that can be used within an

I-QU PLUS-1 program or session.

Chapter 6 lists the system defined (reserved) variables that can be referenced within an

I-QU PLUS-1 program or session.

Chapter 7 describes how to utilize the Record Delivery Area (RDA).

Chapter 8 contains all control directives other than DEFINE and INVOKE which are covered

in chapters that are more appropriate to their use.

Introduction I-QU PLUS-1 Programmer Reference

1-2 KMSYS Worldwide, Inc.

Chapter 9 contains all of the I-QU PLUS-1 procedural commands except those used for file

I/O that are discussed in succeeding chapters.

Chapter 10 includes the directives and commands used for defining and accessing flat files,

PCIOS and SFS 2200 files.

Chapter 11 describes the internal sort interface that may be used within an I-QU PLUS-1

batch program.

Chapter 12 contains all the directives and commands necessary to interface with DMS 2200

either through the standard multi-thread interface provided by UDS Control or the single-

thread interface that may be collected with I-QU PLUS-1.

Chapter 13 describes the EXEC/FCSS/TIPDMS direct I/O (if configured) that may be used

with any 2200 file structure.

Chapter 14 contains the syntax requirements to use the RDMS 2200 interface.

Chapter 15 describes the directives and commands required to use the BIS (MAPPER) DTM

interface.

Chapter 16 lists all the command and keyword abbreviations that may be used through the

I-QU PLUS-1 environments.

Chapter 17 illustrates the use of the special file format, DBDUMP, available only through

I-QU PLUS-1.

Chapter 18 describes the I-QU PLUS-1 utility, QINDEX, used to build and maintain a data

item index file, its processor call format, options and parameters.

1.2 Additional Documentation

The following manuals are available with the release of I-QU PLUS-1:

 I-QU PLUS-1 Applications Development User Guide

 I-QU PLUS-1 Installation Guide

 I-QU PLUS-1 Database Reorganization User Guide

 I-QU PLUS-1 Database Reorganization Utility Reference

The two User Guides contain many examples illustrating I-QU PLUS-1 being used for

applications development, prototyping, program testing, restructuring and database

reorganization.

1.3 Syntax Notation

The following conventions are used throughout this manual in the description of

I-QU PLUS-1 commands:

 Changes to this document since its last publication are marked with a change bar (an

elongated vertical bar) as shown to the right of this paragraph.

 Important notes and warnings are encased in a box as shown around this bullet.

 All words in UPPERCASE letters (not italicized) are reserved keywords and must be

entered exactly as shown or in their abbreviated forms.

 Many keywords may be abbreviated. Please refer to Chapter 16, “Command and

Keyword Abbreviations,” for a full list of permissible abbreviations. In addition,

abbreviations will be highlighted in BLUE throughout the syntax shown in this

manual. For example, DEFINE may be abbreviated as “DEF”.

 All italicized words (mostly in lowercase letters) are to be substituted by a user

supplied name or value.

I-QU PLUS-1 Programmer Reference Introduction

1-3 KMSYS Worldwide, Inc.

 Ellipsis (…) implies allowable, but omitted, repetitions in the published syntax.

Please note that the ellipsis is not allowed in the command or directive when parsed.

In the following example, multiple set names may be specified:

set-name-1 [… set-name-n]

 A vertical bar (|) represents an “or” or “and/or” operator.

 Selections appearing within brackets, “[]”, are lists of optional items of which one

may be selected. In the following example, neither A nor B is required, but either

one or the other may be selected:

[A | B]

 An underlined word in optional brackets represents the default value when not

entered. For example, in the syntax, "[RECORDS | CHARACTERS]," RECORDS is the

default and would be assumed if omitted.

 Selections appearing within braces, “{ }”, are lists of items of which one and only

one must be selected. In the following example, one of either C, D or E must be

selected:

{C | D | E}

 Selections appearing within double vertical bars, “||”, are lists of items of which one

or more must be selected. The items between vertical bars are referred to as

permutations and may be selected in any order. In the following example, one or

more of F, G, and/or H must be selected:

||F | G | H||

To use the SUPPRESS clause as an example:

SUPPRESS {ALL | ;

 || AREA | ;

 RECORD | ;

 {SET | ;

 set-name-1 [… set-name-n] } || }

Either of the following would be correct:

. . . SUPPRESS AREA RECORD

. . . SUPPRESS RECORD AREA

The following example uses several of the above command notation rules:

DO procedure [{UNTIL | WHILE} conditional-expression]

In this example, the word DO is the command keyword and must be entered exactly as

shown. The procedure is user-defined and must always be present. The UNTIL/WHILE

clause is optional as indicated by the block formed by square brackets. If the UNTIL/WHILE

clause is used, either the keyword WHILE or UNTIL (not both) must be entered as indicated

by the block formed by braces, and a valid conditional-expression must follow. The

following examples are possible forms of this command syntax:

DO TOTAL-ROUTINE . (This is the minimal form)

DO TOTAL-ROUTINE UNTIL CNT NOT = 1

DO TOTAL-ROUTINE WHILE CNT < LIST-RESULT

I-QU PLUS-1 Programmer Reference General Information

2-1 KMSYS Worldwide, Inc.

Chapter 2: General Information

2.1 Basic Structure

The I-QU PLUS-1 processor is logically divided into two major components: the COMMAND

EDITOR and the COMMAND EXECUTOR. The COMMAND EDITOR checks each command

entered for correct syntax and attempts to translate it into an internally encoded object

command. If an error is detected during this process, an error diagnostic is displayed and

the command is rejected. If the command passes all edits, it is either passed to the

COMMAND EXECUTOR for immediate execution (conversational mode), or stored in the

object program area for later execution (input mode). The COMMAND EDITOR also controls

the allocation of data variables and the processing of control directives, which will be

discussed later.

The COMMAND EXECUTOR interprets the encoded object command passed from the

COMMAND EDITOR and actually performs the operation. The COMMAND EXECUTOR has

been designed to do the least amount of interpretation possible, therefore achieving

maximum throughput during program execution.

2.2 Modes of Operation

I-QU PLUS-1 commands may be entered in two modes: CONVERSATIONAL or INPUT. In

CONVERSATIONAL mode, each command is edited and executed immediately. Command

results are then displayed to the user. If a DML command is executed, the DMS 2200

command status is displayed. For IF commands, the resulting “TRUE” or “FALSE” condition

will be displayed. When entering commands in INPUT mode, each command is edited

immediately, and then stored in the object program area for later execution. When all

commands have been entered, the user may enter the RUN directive, which will cause the

command executor to resolve all program labels, procedure names, and IF/ENDIF and

DO/ENDDO pairs. If I-QU PLUS-1 is unable to resolve any of these, or an error was

detected during input and the error flag has not been CLEARed, I-QU PLUS-1 will not

attempt to execute the object program. Otherwise, the command executor will begin

executing the object program. All directives, including data definition directives, will be

processed immediately in either CONVERSATIONAL or INPUT mode.

2.3 Commands vs. Directives

There are two types of control statements in I-QU PLUS-1: commands and directives.

General Information I-QU PLUS-1 Programmer Reference

2-2 KMSYS Worldwide, Inc.

Directives are used to establish and control the program environment of the I-QU PLUS-1

program. These are always executed during the “Command Editor” phase of the

I-QU PLUS-1 program; i.e., immediately upon being received by the I-QU PLUS-1 processor

regardless of the mode. They are used to:

 Define files, records, buffers and fields;

 Set the I-QU operating mode (conversational vs. input);

 Invoke subschemas and data item index files;

 Initialize data storage areas;

 Suppress or allow the listing of commands;

 Dump I-QU PLUS-1 internal areas;

 Run a program stored in the object program area or from an object library;

 Save a program in the object program area to an object library;

 Compile a program to resolve program label references.

Directives must always be entered beginning in column position one.

Commands are used to perform data manipulation, program flow control, input/output, etc.

They are executed during the “Command Executor” phase of the I-QU PLUS-1 program.

When in INPUT mode, commands must begin after column one. When in CONVersational

mode, commands must begin in column one. Directives (regardless of the mode) and

program labels must begin in column one.

2.4 Command Line Format

Command formats must follow certain rules. In general, commands may be entered in free

form. Restrictions are as follows:

 All directives must be entered starting in column 1.

 All procedural commands must be entered starting in column 1 when in

CONVERSATIONAL mode, and after column 1 in INPUT mode.

 In INPUT mode, any word starting in column 1 will be regarded as either a control

directive (if it matches one of the valid control directives) or a program or procedure

label.

 A program or procedure label may be up to 30 characters in length. However, only

the first 16 characters will be used by I-QU PLUS-1, and therefore must be unique.

 Only one command may be entered per line.

 A decimal numeric literal may not exceed 18 digits, and if signed, the sign must

immediately precede the first digit. Example: 123, -5 or +1000.00.

 Floating-point numeric literals must be entered in standard floating-point notation

with a decimal point. Example: 1.E-10.

 Alphanumeric literals may not exceed 150 characters. In addition, they must be

enclosed within single or double quotes. If an alphanumeric literal definition begins

with a double quote, the single quote (apostrophe) character may be used in the

literal, and vice versa. Additionally a string of two single ('') or double ("") quotes

within a literal will generate one single or double quote.

Alphanumeric literal examples:

'THIS IS AN ALPHANUMERIC LITERAL'

"This is also 'ONE' literal."

I-QU PLUS-1 Programmer Reference General Information

2-3 KMSYS Worldwide, Inc.

'AND "THIS IS A LITERAL" TOO!'

'This is a single quote ('') within parentheses'

 All command components must be entered between columns 1 through 80. A

semicolon following any word within a command line will cause I-QU PLUS-1 to skip

to the next line to search for the next word of the command; therefore, line

continuation is possible using the semicolon as follows:

IF RDA CUSTOMER-NAME ;

OF CUSTOMER = 'APEX'

 To continue an alphanumeric literal, end the first part with a single (or double) quote

followed by a semicolon. Note: A space must not precede the semicolon. Continue

the literal anywhere on the following line enclosed in quotes. For example:

'...PQRSTUV';

'WXYZ'

 A period, followed by a space, is used in a command line to separate the command

from commentary text. I-QU PLUS-1 will ignore any text following a period that is

not embedded within a literal. Examples of comments are:

DO HEADER-RTN . This a Comment on a Command Line

. *** This entire line is a Comment ***

2.5 File Systems Accessed by I-QU PLUS-1

All DMS 2200 database record placement strategies are supported by I-QU PLUS-1. There

is an I-QU PLUS-1 Data Manipulation Language (DML) command corresponding to each

COBOL/DML command. However, I-QU PLUS-1 syntax may differ from COBOL/DML, and

I-QU PLUS-1 commands can be entered in an abbreviated format.

The I-QU PLUS-1 Processor can be used to read, write, and update standard Processor

Common Input/Output System (PCIOS) files. PCIOS files may be accessed in combination

with DMS 2200 database areas and other file systems, or separately.

I-QU PLUS-1 also supports access to other file types through its Direct I/O (DIO) feature.

This feature provides the ability to access TIP/FCSS, TIP/DMS, or any sector-formatted

EXEC mass-storage file or any tape file.

RDMS 2200 relational databases can be accessed through two I-QU PLUS-1 commands that

provide RDMS 2200 interface information. This information is comprised of an RDML (or

SQL) formatted command, RDML error status variables and application program variables

(table column names, table column values, etc.). All RDML formatted commands are

supported and may be used in conjunction with I-QU PLUS-1 commands that interface with

other file systems.

The I-QU PLUS-1 processor can be used to read and write BIS reports via an interface with

Data Transfer Module (DTM) of BIS. I-QU PLUS-1 allows “queue-aliases” to be defined in

order to access more than one BIS report simultaneously through the same BIS queue. The

DTM interface may be used in conjunction with any other I-QU PLUS-1 file system interface.

I-QU PLUS-1 Programmer Reference Internal Structure

3-1 KMSYS Worldwide, Inc.

Chapter 3: Internal Structure

I-QU PLUS-1 internal storage is organized into three areas of interest to the user:

 Record Delivery Area (RDA);

 Variable Data Storage Area;

 Object Program Area.

This chapter will describe how these areas are used.

3.1 Record Delivery Area (RDA)

The RDA is used for all input and output for DMS2200 database records, PCIOS file records

and and all other file interfaces. The size of this area will vary depending upon how

I-QU PLUS-1 was generated. It is important to remember that all read, write, fetch, modify,

etc. operations assume that the data record begin in the first position of this area. If

multiple records are to be resident simultaneously, then data from the RDA can be moved to

variable data storage prior to a subsequent I/O. Another way to access multiple records

simultaneously is to define alternate record areas using the “DEFINE RA” directive. This

directive allows the user to define alternate areas of the RDA to be used for I/O for specific

records or files. See the DEFINE RA directive for more information.

Since the RDA will be generated larger than any record that may be read, the upper ranges

may be used for additional workspace, and the allocation of tables, etc. When issuing the

WRITE command, information may be built in an unused area of the RDA and appended to

the record when it is written.

The RDA may be referenced in two ways: directly by character position, or by the data item

name. The following sections describe RDA referencing in detail.

3.1.1 Direct RDA Reference

When using the direct RDA reference, the starting byte (or character) position, field length,

data type, and subscript or index offset are specified.

The direct RDA reference format is:

RDA (starting-byte-position,length) [data-type] [:index | :subscript]

The starting-byte-position is the offset (relative to 1) of the referenced data from the

beginning of the RDA or of a record within the RDA.

The length is in bytes and is the actual length of the referenced data. For computational

data items, this is the actual byte length of the data, not the COBOL picture length. For

example, if the COBOL picture is PIC 9(10) COMP, the actual byte length is 4 (assuming the

data is ASCII). Table 3.2 may be used to determine the byte length of various

computational field definitions.

The index specifies a numeric literal, or a decimal integer numeric variable, immediately

following a colon (:). Refer to page 3-6 for detailed information regarding RDA indexing.

Internal Structure I-QU PLUS-1 Programmer Reference

3-2 KMSYS Worldwide, Inc.

The subscript specifies the name of a defined subscript variable to be used in addressing the

data item. Refer to page 3-6 for detailed information on RDA subscripting.

Data within the RDA may be referenced in ASCII (quarter word, 9-bit bytes) or FIELDATA

(sixth word, 6-bit bytes) form. Data representation is indicated by the data-type field as

shown in the following table:

Data Type Description

DISP

A9

SN9

UN9

COMP

SB9

UB9

ASCII alphanumeric display (default).

ASCII alphanumeric display.

Signed ASCII numeric display.

Unsigned ASCII numeric display.

Signed ASCII aligned binary.

Signed ASCII aligned binary.

Unsigned ASCII aligned binary.

DISP-1

A6

SN6

UN6

COMP-4

SB6

UB6

Fieldata alphanumeric display.

Fieldata alphanumeric display.

Signed fieldata numeric display.

Unsigned fieldata numeric display.

Signed fieldata aligned binary.

Signed fieldata aligned binary.

Unsigned fieldata aligned binary.

COMP-1

FP1

COMP-2

FP2

Single-precision floating point.

Single-precision floating point.

Double-precision floating point.

Double-precision floating point.

DISP-2 or

A18

Kanji. Note: For alignment purposes within the RDA, you

must specify two bytes for each double-byte character

required; therefore, if you have three Kanji double-byte

characters, you would specify RDA (n,6) DISP-2.

MAPNUM BIS numeric data format.

Table 3-1: Data Types

Please note that exact binary (i.e., PIC 1(3), etc.) is not currently supported in

I-QU PLUS-1; however, exact binary is supported in QINDEX for alignment purposes only

(see Chapter 18).

If using the ASCII data code, the starting-byte-position and length must be given as ASCII.

If using the FIELDATA data code, locations must be given in terms of FIELDATA lengths.

I-QU PLUS-1 Programmer Reference Internal Structure

3-3 KMSYS Worldwide, Inc.

The number of bytes required for signed aligned binary fields can be determined by utilizing

the following table:

ASCII (COMP) FIELDATA (COMP-4)

Positions in

Picture Clause

Record Area

Bytes

Positions in

Picture Clause

Record Area

Bytes

1-2

3-5

6-7

8-10

11-13

14-15

16-18

1

2

3

4

5

6

7

1

2-3

4-5

6

7-8

9-10

11-12

13-14

15

16-17

18

1

2

3

4

5

6

7

8

9

10

11

Table 3-2: Computational Field Byte Lengths

COMP-1 and COMP-2 are always 4 bytes and 8 bytes respectively for ASCII alignment, and

6 bytes and 12 bytes for FIELDATA alignment (one and two words).

MAPNUM items must be set as if they are alpha items; however, they can be used to set

numeric items and must be tested as numeric items (see the IF and SET commands).

Here are some examples of RDA direct references with the following data in the RDA:

1...5....10...15...20...25...30...35...

ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789

1. RDA (2,3)

2. RDA (27,2) COMP

3. RDA (5,4) UB9

4. RDA (1,5) :X

5. RDA (7,6) COMP-4

6. RDA (2,9) MAPNUM

Explanations:

Example 1 would refer to the 3-character field starting in position 2 of the RDA, the

value of which is “BCD” assuming the above data is ASCII.

Example 2 would refer to an ASCII computational field of two bytes starting in

position 27.

Example 3 would refer to the second full word in the RDA as unsigned binary.

Example 4 would refer to positions 1 through 5 offset by the value of X. IfX=5,the

value would be “FGHIJ” assuming the above data is ASCII (see the subsection “RDA

Indexing and Subscripting” below).

Example 5 would refer to a full word FIELDATA computational field starting in byte

position 7 (word 2 of the RDA).

Example 6 refers to an RDA field in BIS numeric data format. BIS numeric data is

always in edited form, which may include a leading sign, spaces and decimal point.

An example of a MAPNUM data item would be ‘ -123.58’.

Internal Structure I-QU PLUS-1 Programmer Reference

3-4 KMSYS Worldwide, Inc.

3.1.2 Item Name RDA Reference

The second method of referencing the RDA uses the I-QU PLUS-1 data item index file. A

primary data item index is created automatically during INVOKE processing for DMS

database items (see “Subschema Invocation (INVOKE)” in the “DMS2200 Interface”

chapter). A secondary data item index may also be specified via the INDEX directive for

non-DMS data items and redefined DMS database items. The QINDEX Processor is used to

create data item index files from COBOL definitions. Refer to Chapter 18, “QINDEX

Reference,” for an explanation on how to create alternate I-QU PLUS-1 data item index files.

To use this method of referencing the RDA, it is necessary to specify the data item name

and its index offset or subscript, if any.

The format for a named RDA reference is:

RDA item-name [{IN | OF} {record-name | file-name | queue-alias | SORT}] ;

 [:index | :subscript]

The item-name must be defined in one of the data item index files currently in use (built by

the INVOKE and INDEX directives) or by a previously issued DEFINE RDA directive.

The IN/OF option allows the item-name to be qualified to the proper database record-name,

PCIOS file-name, BIS DTM queue-alias or SORT area.

3.1.3 RDA Indexing and Subscripting

An RDA index specifies a byte offset to be used when addressing the data. The index may

be entered as a numeric literal, or a numeric variable, immediately following a colon (:).

Subscripting differs from indexing in that a subscript refers to an occurrence of an item

within a table of items, while an index refers to a number of bytes from the start of the

item. Subscripting in I-QU PLUS-1 is similar to that used in COBOL, except that a defined

subscript variable must only be used to reference the OCCURS items for which it was

defined. RDA subscripting may be used on multidimensional RDA references, whereas RDA

indexes may not.

The index or subscript options are used in the same way as with a direct reference in

specifying a byte offset from the beginning of the field (indexing), or a specific occurrence

(subscripting).

Given the following portion of a record definition:

05 RATE-TABLE.

 10 RATE OCCURS 10 TIMES PIC 9(5).

05 HIGHEST-RATE PIC 9(5).

An example of indexed references follows:

To refer to the first RATE, simply enter “RATE”.

To refer to the second RATE, enter “RATE :5”. (RATE offset by five bytes.)

To refer to any RATE, use “RATE :RATE-INDEX”, where RATE-INDEX is a numeric

variable used to index to the desired occurrence of RATE.

To use subscripted reference, a subscript variable must be defined using the DEFINE SUB

directive. The defined subscript variable may then be used in much the same manner as a

COBOL subscript.

I-QU PLUS-1 Programmer Reference Internal Structure

3-5 KMSYS Worldwide, Inc.

The following program example illustrates the necessary I-QU PLUS-1 code to examine all

10 occurrences of RATE in the above record definition using RDA indexing:

DEF N RATE-CTR

DEF N RATE-INDEX

.....

 SET RATE-CTR = 0

 SET RATE-INDEX = 0

 DO RATE-LOOP UNTIL RATE-CTR = 10

.....

RATE-LOOP PROCEDURE

 DISPLAY RDA RATE :RATE-INDEX

 SET RATE-CTR = RATE-CTR + 1

 SET RATE-INDEX = RATE-INDEX + 5

 ENDPROC

Note that the numeric variable RATE-INDEX is incremented by the byte length of the field

being examined, and not by one (1) as in standard COBOL subscripting or indexing.

The following is the same example using RDA subscripting:

DEF SUB RATE-SUA RATE

.....

 SET RATE-SUB = 1

 DO RATE-LOOP WHILE RATE-SUB NOT = 10

.....

RATE-LOOP PROCEDURE

 DISPLAY RDA RATE :RATE-SUB

 SET RATE-SUB = RATE-SUB + 1

 ENDPROC

In this case, a subscript variable, RATE-SUB, was defined for use in referencing the table.

RATE-SUB is incremented the same way as a COBOL subscript. RATE-SUB may only be

used to reference the table for which it was defined.

3.1.4 Variable RDA Referencing

A direct RDA reference allows the use of a variable start-byte-position and/or length. To

use this feature, two reserved numeric variables, S$ and L$, have been provided. The

contents of these variables will be used in a direct RDA reference whenever a zero start-

byte-position and/or length are specified. The value of S$ will be substituted for a start-

byte-position of zero; the value of L$ will be substituted for a length of zero.

Caution: If the values in either S$ or L$ cause an invalid RDA reference, runtime errors will

result.

Examples:

1. RDA (0,0)

2. RDA (20,0) DISP-1

In the case of Example 1, both the start-byte-position and length will be obtained

from the reserved variable S$ and L$.

Example 2 would refer to a FIELDATA field starting in position 20 with the length of

the value in the reserved variable L$.

Internal Structure I-QU PLUS-1 Programmer Reference

3-6 KMSYS Worldwide, Inc.

3.2 Variable Data Storage Area (DSA)

The variable data storage area is where all reserved variables, user variables and literals are

allocated by I-QU PLUS-1. Reserved variables are automatically defined and allocated by

I-QU PLUS-1 upon initialization. Literals are automatically allocated in this area as they are

encountered by the command editor. The size of this area is an I-QU PLUS-1 generation

parameter. Definition of user variables, and the names and contents of reserved variables,

will be covered later.

3.3 Object Program Area

The Object Program Area is where the internally encoded object program is stored for

execution by the command executor. The size of this area is specified at generation time.

I-QU PLUS-1 Programmer Reference Processor Call Format

4-1 KMSYS Worldwide, Inc.

Chapter 4: Processor Call Format

I-QU PLUS-1 is called as a processor using the following format:

@IQU,[options][password]

The processor name will vary depending on a configuration parameter or installation mode

used when I-QU PLUS-1 was installed. The default processor name for the default

installation mode is shown above. Default names for installation modes IQUA through IQUK

correspond to the mode chosen; e.g., a mode IQUA install would produce a default

processor name of IQUA.

Valid options are:

A Causes I-QU PLUS-1 to abort if a RUN directive is attempted and errors have

been detected during command editing or program resolution. This option

should be used if I-QU PLUS-1 is part of a multi-step runstream and it is not

desirable to continue in the event of an abnormal step termination.

B Causes the execution of I-QU PLUS-1 to be treated as a batch mode execution.

All I-QU PLUS-1 output will use the 132-character print width.

C Automatically puts I-QU PLUS-1 into CONVERSATIONAL mode, even if generated

for initial mode of INPUT.

D Causes the execution of I-QU PLUS-1 to be treated as a demand mode

execution. This option is the converse of the B-Option. When used, it will cause

I-QU PLUS-1 not to produce an object print and then abort when a fatal runtime

error is encountered.

E Causes input to be echoed when in CONVERSATIONAL mode.

I Automatically puts I-QU PLUS-1 into INPUT mode, even if generated for initial

mode of CONVERSATIONAL.

K Causes the object program table area to be dumped when an OBJECT directive

or DUMP ALL command is executed. The object program area is not normally

dumped, as it is of very little use to the I-QU PLUS-1 programmer.

O When interfacing with DMS 2200, execute in DMS test mode.

T For KMSYS Worldwide debugging only. Use only if directed to by KMSYS

Worldwide personnel.

U Inhibits listing of command input when in INPUT mode. This is useful when

running a tested I-QU PLUS-1 program and commands do not need to be listed.

V Disables the ability to do II-keyins.

X For KMSYS Worldwide debugging only. Use only if directed to by KMSYS

Worldwide personnel.

Y When interfacing with DMS 2200, execute in training mode.

The password entry is only required when the password feature of I-QU PLUS-1 security is

enabled. It is used to control DMS 2200 subschema access and is set up during the

I-QU PLUS-1 generation process (see the I-QU PLUS-1 Installation Guide).

I-QU PLUS-1 Programmer Reference Defining Variables

5-1 KMSYS Worldwide, Inc.

Chapter 5: Defining Variables

I-QU PLUS-1 does not allow implicit variable definition. All variables must be defined using

the DEFINE directive prior to being referenced. The DEFINE directive may be entered at any

point, but must appear before the variable is referenced. There are only four types of data

variables: signed decimal numeric, double precision floating point numeric, alphanumeric

strings and double-byte Kanji.

5.1 Alphanumeric String Variables (DEFINE A)

Alphanumeric variables may be defined as any length; however, they may not exceed the

generated size of the variable data storage area. They may be specified with an initial

literal value from 1 to 150 characters in length. When alphanumeric variables are defined

with a specified length and no initial value, their initial contents will be undetermined. If an

initial literal is specified with no length, the size of the variable will be the size of the literal.

Format:

DEFINE A variable-name { || length-of-variable | 'string-literal' || }

DEFINE may be abbreviated DEF.

If both string-literal and length-of-variable are specified, and length-of-variable is greater

than the length of string-literal, the string-literal will be left justified and the variable will be

padded with spaces to the right. If length-of-variable is less than string-literal, truncation

will occur.

Examples:

1. DEFINE A STARS '***********'

2. DEFINE A HOLD-REC 80

3. DEFINE A COMPANY-VARIABLE 80 'KMSYS Worldwide, Inc.'

Explanations:

STARS in example 1 will contain 11 asterisks and is equivalent to:

DEFINE A STARS '***********' 11

In example 2, HOLD-REC will have a length of 80, but its initial contents will be

unknown.

In example 3, COMPANY-variable will initially be set to “KMSYS Worldwide, Inc.” but

will have a length of 80.

5.2 Decimal Numeric Variables (DEFINE N)

All decimal numeric variables are allocated as 18-digit signed numbers. They may be

defined with an initial value. If a value is not specified, the variable is initialized to zero.

Defining Variables I-QU PLUS-1 Programmer Reference

5-2 KMSYS Worldwide, Inc.

Format:

DEFINE N variable-name [decimal-value-and-precision]

DEFINE may be abbreviated DEF.

The decimal-value-and-precision determines both the initial value of the variable and the

number of implied decimal positions (scale factor) it will have.

Examples:

1. DEFINE N COUNT 123

2. DEFINE N MINUS-FIVE -5

3. DEFINE N HOLD

4. DEFINE N TOT-AMT .00

Explanations:

In example 1, COUNT will have an initial value of 123.

In example 2, MINUS-FIVE will be assigned an initial value of -5.

In example 3, HOLD will have an initial value of zero.

In example 4, TOT-AMT will have an initial value of zero, and two implied decimal

positions.

5.3 Floating Point Numeric Variables (DEFINE FP)

All floating-point variables are stored in double precision format for maximum accuracy.

When floating-point variables are moved to or from RDA single precision fields or decimal

numeric items, translation will be made according to ASCII COBOL rules.

Format:

DEFINE FP variable-name [value]

DEFINE may be abbreviated DEF.

The value of a floating-point variable may be specified as in either decimal form, or

standard floating-point notation.

Examples:

1. DEFINE FP VARIANCE 1.2400E+2

2. DEFINE FP RESULT

Additional information on floating-point usage may be found on the EDIT command.

5.4 Kanji Variables (DEFINE K)

Kanji variables may be defined as any length, but may not exceed the generated size of the

variable data storage area. They may be specified with an initial literal value from 1 to 75

double-byte characters in length. When kanji variables are defined with a specified length

and no initial value, their initial contents will be undetermined. If an initial literal is

specified with no length, the size of the variable will be the size of the literal.

Format:

DEFINE K variable-name { || length-of-variable-in-double-bytes | 'string-literal' || }

DEFINE may be abbreviated DEF.

If both string-literal and length-of-variable-in-double-bytes are specified, and length-of-

variable-in-double-bytes is greater than the length of string-literal, the string-literal will be

left justified and the variable will be padded with spaces to the right. If length-of-variable-

in-double-bytes is less than string-literal, truncation will occur.

I-QU PLUS-1 Programmer Reference Reserved Words

6-1 KMSYS Worldwide, Inc.

Chapter 6: Reserved Words

I-QU PLUS-1 maintains a set of reserved words that can be used on many I-QU PLUS-1

commands. These reserved words fall into two categories: reserved variables and special

names.

6.1 Reserved Variables

I-QU PLUS-1 automatically reserves a set of variables upon initialization. These variables

occupy the same storage area as user variables, and may be accessed and modified in the

same manner. The following is a list of reserved variables and an explanation of how each

are used:

Reserved Name Description

$TAB $TAB is a one-character alpha variable initially set to octal 011

(decimal 9), which represents a horizontal tab character. This

may be used for formatting a BIS output line instead of the

automatic tab insertion feature.

C-AKEY C-AKEY is a numeric variable with an initial value of 0. It will

automatically be set to the AREA-KEY of the DMCA after the

execution of a DML command.

C-AREA-NAME C-AREA-NAME is a twelve-character alpha variable with an initial

value of spaces. It is automatically set to the current AREA-

NAME from the DMCA after all DML commands.

C-DBK C-DBK is a numeric variable with an initial value of 0. It is set

to the current of run unit database key when the SET CURRENT

DBK command is executed.

C-DBP C-DBP is a numeric variable with an initial value of 0. It is set

to the current of run unit database pointer when the SET

CURRENT DBP command is executed. NOTE: SET CURRENT

DBP is part of the optional pointer manipulation command set

and will not have any effect if pointer manipulation is not

generated.

C-O-R C-O-R is a thirty-character alpha variable with an initial value of

spaces. It will be set automatically after the execution of DML

commands and will contain the current RECORD-NAME from the

DMCA.

Reserved Words I-QU PLUS-1 Programmer Reference

6-2 KMSYS Worldwide, Inc.

Reserved Name Description

C-O-T C-O-T is a thirty-character alpha variable with an initial value of

spaces. It is automatically set after a READ of a DBDUMP file.

It will contain the record name of the record read.

C-PAGE C-PAGE is a numeric variable with an initial value of 0. It will

automatically be set to the current PAGE-NUM of the AREA-KEY

after each DML command.

C-REC C-REC is a numeric variable with an initial value of 0. It will

automatically be set to the current RECORD-NUM of the AREA-

KEY after each DML command.

DATE DATE is an alpha variable with a length of 10 characters. It is

initially set to the current Gregorian date in edited form

(example: July 25, 1994 = “1994/07/25”). This variable is

altered by the DATE command.

DATE-NUM DATE-NUM is a numeric variable with an initial value of the

current Gregorian date in the form YYYYMMDD. This variable is

altered by the DATE command.

DAY DAY is a numeric variable with an initial value of the current day

of the month. This variable is altered by the DATE command.

ERROR-NUM ERROR-NUM is a numeric variable with an initial value of 21. It

will automatically be set to the value of ERROR-NUM from the

DMCA after the execution of all DML commands.

G-AKEY G-AKEY is a numeric variable with an initial value of 0. It is not

set by I-QU PLUS-1, but may be used by the I-QU PLUS-1 user

as desired.

G-AREA-NAME G-AREA-NAME is a twelve-character alpha variable with an

initial value of spaces. It is not used by I-QU PLUS-1, but may

be used by the I-QU PLUS-1 user as desired.

G-PAGE G-PAGE is a numeric variable with an initial value of 0. It is not

set by I-QU PLUS-1, but may be used by the I-QU PLUS-1 user

as desired.

G-REC G-REC is a numeric variable with an initial value of 0. It is not

set by I-QU PLUS-1, but may be used by the I-QU PLUS-1 user.

G-RECORD-NAME G-RECORD-NAME is a thirty-character alpha variable with an

initial value of spaces. It is not used by I-QU PLUS-1, but may

be used by the I-QU PLUS-1 user. G-RECORD-NAME may be

initialized with the change file name when executing

I-QU PLUS-1 in DMS test mode. In this instance, an @USE

statement is required to get the change file qualifier (see

Section 9.8), and the O-option is required on the I-QU PLUS-1

processor call (see Chapter 4).

IICODE IICODE is an eight-character alpha variable initially set to

spaces. Upon receipt of an immediate interrupt (II), the value

entered with the II-key-in will be moved here. EXEC II-key-ins

are limited to 6 characters. It may be used within a program to

take certain actions based on unsolicited console key-ins.

I-QU PLUS-1 Programmer Reference Reserved Words

6-3 KMSYS Worldwide, Inc.

Reserved Name Description

IMPART-DEPART IMPART-DEPART is a numeric variable with an initial value of 0.

It is set to 1 after the execution of the DML IMPART, and to 2

after the execution of the DEPART command.

J-DAY J-DAY is a numeric variable with an initial value of the current

Julian date in the form YYYYDDD. This variable is altered by the

DATE command.

L$ L$ is a numeric variable with an initial value of 0. It is used to

replace the length value in a direct RDA reference if a length of

zero is specified.

MONTH MONTH is a numeric variable with an initial value of the current

month. This variable is altered by the DATE command.

RB-CODE RB-CODE is a numeric variable with an initial value of zero. It

will be set to the rollback error code when a DMS rollback error

occurs.

REC$LEN REC$LEN is a numeric variable with an initial value of 0. It is

automatically set to the record length (in words) after each

sequential file read. In the case of a DBDUMP file, only the

length of the data portion of the record is represented. The

CALSIM command also uses this variable to return the resulting

chain number from the CALC simulation routine.

RUNID RUNID is a 6-character alpha variable initially set to the original

RUN-ID under which the I-QU PLUS-1 Processor is running.

RUNID is not the generated run-id created by the operating

system when two runs having the same run-id are started.

S$ S$ is a numeric variable with an initial value of 0. It is used to

replace the start-byte value in a direct RDA reference if a start-

byte of zero is specified.

TIME TIME is a twelve-character alpha variable with an initial value of

spaces. It is set to the time of day in display format by

execution of the TIME command. The format is

HH:MM:SS.DDD.

TIME-MSPM TIME-MSPM is a numeric variable with an initial value of 0. It is

set to the time of day in milliseconds past midnight (MSPM) by

execution of the TIME command.

YEAR YEAR is a numeric variable with an initial value of the current

year (example: 1994). This variable is altered by the DATE

command.

X,Y and Z X, Y and Z are numeric integer variables with an initial value of

zero with no implied decimal positions. They are set up for the

convenience of the user and may be used for any purpose.

Reserved Words I-QU PLUS-1 Programmer Reference

6-4 KMSYS Worldwide, Inc.

6.2 Special Names

I-QU PLUS-1 automatically reserves a set of special names that can be used on several

I-QU PLUS-1 commands. The following is a list of these special names and how they are

used:

Reserved Name Description

$ALPHA This special name can only be used in a conditional-expression on

the IF or DO commands. The characters that meet the condition

must be within the range of ‘A’ through ‘Z’, ‘a’ through ‘z’ (ASCII

only), or space. An I-QU PLUS-1 configuration parameter can

change the interpretation of this special name.

$HIVALS $HIVALS correspond to ASCII COBOL HIGH-VALUES and may be

used in setting alpha variables or RDA items (see the SET

command). $HIVALS may also be used in a conditional-expression

on the IF or DO commands. They are interpreted as all octal 177s

(or 377s) for ASCII or all octal 77s for FIELDATA. An I-QU PLUS-1

configuration parameter can change the interpretation of this special

name.

$LOVALS $LOVALS correspond to ASCII COBOL LOW-VALUES and may be

used in setting alpha variables or RDA items (see the SET

command). $LOVALS may also be used in a conditional-expression

on the IF or DO commands. They are interpreted as all binary

zeroes.

$NUM This special name can only be used in a conditional-expression on

the IF or DO commands. The characters that meet the condition

must be within the range of 0 through 9.

$PBUFF $PBUFF refers to the current contents of the print buffer which is

filled by using the I-QU PLUS-1 concatenation symbol on the

DISPLAY, EDIT, TRIMDISP and TRIMEDIT commands. $PBUFF may

be referenced on the SET and RDMS commands. It will be cleared

by a DISPLAY, EDIT, TRIMDISP or TRIMEDIT without a concatenation

symbol or when referenced by a SET or RDMS command.

$SPACES $SPACES may be used to set an alpha variable or RDA item to all

spaces (see the SET command). $SPACES may also be used in a

conditional-expression on the IF command.

I-QU PLUS-1 Programmer Reference Record Delivery Area (RDA)

7-1 KMSYS Worldwide, Inc.

Chapter 7: Record Delivery Area (RDA)

This chapter covers the defining or partitioning of the input/output area of I-QU PLUS-1.

This area is called the Record Delivery Area (RDA). The starting position of files, records,

buffers, etc. can be defined through the use of the DEFINE RA directive. Data items can be

defined by using the DEFINE RDA directive and subscripts established (DEFINE SUB

directive) for repeating data item definitions (OCCURS clause in COBOL).

The DEFINE F (Define File) directive is not covered in this chapter since its use and format is

dependent upon a particular file system; PCIOS, DTM, etc. Refer to each file system’s

chapter in this manual for the DEFINE F directive required.

7.1 Alternate Record Area Definition (DEFINE RA)

All input and output of either DMS 2200 records, PCIOS file records or BIS DTM queue-alias

areas default to position one of the RDA. This default is not always desirable. When

working with a database record whose location mode is via set and set occurrence selection

is location mode of owner, or when data must be extracted from several different record

types that must be current at the same time, having several records resident in the RDA is

a requirement. The DEFINE RA directive allows alternate record areas to be used in I/O

operations for DMS 2200 records, PCIOS files, DTM queue-alias areas and SORT records.

Format:

DEFINE RA {filename | record-name queue-alias | SORT} ;

 {absolute-word-number | {OVERLAY | AFTER} ;

 {file-name | record-name | queue-alias | SORT } }

DEFINE may be abbreviated DEF.

For proper displacement of items within a named file/record, the DEFINE RA directive

should be coded prior to referencing those items in the program.

If alternate records delivery areas are to be defined for DMS records, they should be

specified after INVOKE but prior to IMPART.

Filename applies to PCIOS files. The file must be currently defined with a DEFINE F

directive (see Chapter 10, “PCIOS and SFS 2200 File Interface” in this manual). The

filename may be an entry defined in a permanent data item index file by the QINDEX

processor. By defining the file with the QINDEX processor, the I-QU PLUS-1 processor will

be able to address file data items by name, and automatically determine the RDA location of

the record.

For information on creating a permanent data item index file, see Chapter 18, “QINDEX

Reference”.

Record Delivery Area (RDA) I-QU PLUS-1 Programmer Reference

7-2 KMSYS Worldwide, Inc.

Record-name applies to DMS 2200 records. The record must be currently invoked (see

“DMS 2200 Interface” in this manual). In addition, a DEFINE RA which references a DMS

2200 record must be coded prior to the IMPART for proper record offsetting to occur.

Queue-alias applies to BIS DTM reports. The queue-alias must be currently defined with a

DEFINE F directive (see Chapter 15, “BIS DTM Interface,” in this manual).

SORT specifies the area to be used for all sort RELEASEs and RETURNs.

Absolute-word-number is the beginning word address within the RDA that will be used for

I/O. Word addresses may range from 1 to the generated maximum RDA length. Word

number is used here instead of character address to ensure that the record area is

established on a full word boundary.

OVERLAY allows one record area to overlay another. The OVERLAY clause is used instead of

an absolute word number. If the record to be overlaid is located in an alternate record

area, its DEFINE RA must precede the definition in which the OVERLAY is specified.

AFTER is used when one record area is to follow another. The AFTER clause is used instead

of an absolute word number. If the record to be followed is located in an alternate record

area, its DEFINE RA must precede the definition in which the AFTER is specified.

When using absolute or direct RDA references, e.g., RDA (21,4), care should be taken when

used in relationship to the DEFINE RA … AFTER directive. When the AFTER clause

references a record/file named on a previous DEFINE RA … AFTER directive, the location of

the record/file that is being defined will start one word (four ASCII bytes) beyond the length

of the referenced record. Take, for example, five records that are ten words each. The

DEFINE RA directives might be coded as follows:

DEF RA REC2 AFTER REC1

DEF RA REC3 AFTER REC2

DEF RA REC4 AFTER REC3

DEF RA REC5 AFTER REC1

Words 21 and 32 are not used. REC2 and REC5 do not reference a record named on a

previous DEF RA directive; therefore, they begin immediately after REC1. REC 3 and REC 5

reference a record named on a previous DEF RA; therefore, they begin one word to the right

of the referenced record. This situation was detected in an earlier release of I-QU PLUS-1

and cannot be changed for reasons of upward compatibility; i.e., changing I-QU PLUS-1 to

eliminate this extra word, could adversely affect existing I-QU PLUS-1 programs that

contain direct references.

An alternate record area for any single file, record or SORT may be defined only once in an

I-QU PLUS-1 program.

Examples:

1. DEFINE RA R0001-PART-MASTER 100

2. DEFINE RA SORT AFTER R0001-PART-MASTER

3. DEFINE RA OUTFILE OVERLAY SORT

Explanations:

In example 1, DMS 2200 will use the area beginning at word 100 of the record

delivery area for all input and output for the R0001-PART-MASTER record.

Example 2 causes all SORT Release/Return commands to use the area beginning at

the next word following the R0001-PART-MASTER record in the RDA.

In example 3, all I/O for the PCIOS file OUTFILE will be done from the same area

used by the SORT.

I-QU PLUS-1 Programmer Reference Record Delivery Area (RDA)

7-3 KMSYS Worldwide, Inc.

7.2 Record Delivery Area Field Definition (DEFINE RDA)

Areas within the RDA may be defined for reference by name without an external data item

index, or items already defined in a data item index may be redefined by the DEFINE RDA

directive. This is useful when there is a need to redefine fields, or when referencing files for

which no data item index file has been generated. DEFINE RDA allows the user to assign a

name to a direct, or relative, RDA reference, thus simplifying future references to the data.

Format:

DEFINE RDA item-name (start-byte-position, length) ;

 [data-type] [decimal-precision]

Where:

start-byte-position = {RDA-absolute-start-position | * | item-name | *item-name}

DEFINE may be abbreviated DEF.

The start-byte-position may be specified in several ways. The start-byte-position may be

given as an integer offset from the start of the RDA. An asterisk (*) in the start-byte-

position indicates that this item begins immediately following the last RDA field defined. If

an asterisk is used on the first DEFINE RDA in the program, position one (1) will be

assumed. If the start-byte-position is given as a defined RDA item-name, either defined

with a previous DEFINE RDA or in the current primary or secondary data item index, the

item being defined will start at the same position of the named item. If an RDA item-name

is used, preceded by an asterisk (*), the item being defined will start immediately following

the named item. An RDA item-name used in a DEFINE RDA may be qualified by record or

file name.

The length is the actual length of the referenced data. For computational data items, this is

the actual byte length of the data, not the COBOL picture length. For example, if the

COBOL picture is PIC 9(10) COMP, the actual byte length is 4 (assuming the data is ASCII).

Table 3.2 may be used to determine the byte length of various computational field

definitions.

If the definition specifies zero in either position of the RDA reference, the value of S$ and/or

L$ will be used when item-name is referenced. In addition, item-name can be referenced

with an index or subscript when used in a command.

The decimal-precision is a literal showing how many decimal positions are implied (the scale

factor). The decimal-precision specification does not assign a value to the RDA field.

The data-type must be one of the allowed I-QU PLUS-1 RDA data types.

Examples:

1. DEFINE RDA PART-KEY (1,10)

2. DEFINE RDA PART-KEY-FIRST-4 (PART-KEY,4)

3. DEFINE RDA PART-KEY-REST (*,6)

4. DEFINE RDA PRICE-CODE (11,4) COMP

5. DEFINE RDA PRICE (*,4) COMP .00

6. DEFINE RDA PART-TABLE (0,3)

7. DEFINE RDA TITLE-FIRST-CHAR (*EMP-NAME OF PAYMAST,1)

Explanations:

In example 1, PART-KEY defines a display field in the first 10 characters of the RDA.

In example 2, PART-KEY-FIRST-4 redefines the first 4 positions of PART-KEY defined

in example 1.

PART-KEY-REST, in example 3, redefines the last 6 positions of PART-KEY. The

asterisk indicates that PART-KEY-REST immediately follows PART-KEY-FIRST-4 in the

RDA since it was the last RDA field defined.

Record Delivery Area (RDA) I-QU PLUS-1 Programmer Reference

7-4 KMSYS Worldwide, Inc.

In example 4, PRICE-CODE is a computational data item immediately following the

PART-KEY in the RDA.

In example 5, PRICE is a computational field with 2 implied decimal positions. The

equivalent COBOL picture would be PIC S9(8)V99 COMP. PRICE will immediately

follow PRICE-CODE in the RDA.

In example 6, PART-TABLE defines a 3-character field with variable start position to

be determined at run time based on the content of the reserved variable S$.

Example 7 demonstrates the redefinition of a portion of a data item defined in a DMS

2200 record. TITLE-FIRST-CHAR starts immediately following the item named EMP-

NAME in record PAYMAST (see qualified RDA item referencing).

7.3 Subscript Variable Definition (DEFINE SUB)

Subscript variables may be defined for use in referencing RDA data item arrays. A subscript

variable may only be used to reference items within a single array; therefore, each array to

be referenced would require a different subscript variable. A subscript variable contains the

length of the subscripted item as well as the desired occurrence number of the item to be

referenced. The item length portion may not be accessed by the user. Only the occurrence

number can be referenced.

Format:

DEFINE SUB subscript-name RDA-reference [:subscript-name]

DEFINE may be abbreviated DEF.

The RDA-reference either may be a direct RDA reference or may refer to a data item name

from the currently invoked subschema, secondary data item index file or a user defined RDA

reference.

The optional :subscript-name on the RDA-reference is used in setting up subscripts for

multi-dimensional arrays. It names the subscript variable used to reference the RDA-

reference name within an occurring group. When the optional :subscript-name is used, the

RDA-reference may not be direct.

Examples:

Given the following COBOL two-dimensional table definition:

05 BUDGET-TABLE.

 10 YEAR-ENTS OCCURS 5.

 15 MONTH-ENTS OCCURS 12.

 20 BUDGET-AMT PIC 9(7)V99.

Two subscript variables would be defined as follows:

1. DEFINE SUB YSUB YEAR-ENTS

2. DEFINE SUB MSUB MONTH-ENTS :YSUB

Explanations:

In example 1, YSUB is set up to reference each of the 5 YEAR-ENTS entries.

In the second DEFINE SUB, MSUB is set up to reference MONTH-ENTS within YEAR-

ENTS.

To reference the BUDGET-AMT for the 2nd month of the 3rd year, the following may

be used:

YSUB = 3

MSUB = 2

TOT-BUDGET = TOT-BUDGET + RDA BUDGET-AMT :YSUB :MSUB

I-QU PLUS-1 Programmer Reference Control Directives

8-1 KMSYS Worldwide, Inc.

Chapter 8: Control Directives

The following directives are used to perform non-procedural control functions.

8.1 ADD

The ADD directive is used to obtain program input from a symbolic element in an external

EXEC file. This will cause I-QU PLUS-1 to begin reading the specified element, which may

contain DIRECTIVES and/or PROCEDURAL commands. When end-of-file is reached on the

ADDed element, I-QU PLUS-1 will then resume reading the original input stream. Any

number of ADD directives may be placed anywhere in the I-QU PLUS-1 program. ADD

directives may be nested up to a depth of ten (10) levels. The formats for the ADD

directive are:

Format 1:

ADD element-name [FROM [qualifier*]filename]

Format 2:

ADD * FROM [qualifier *]filename

ADD may be abbreviated AD.

If the FROM clause is not specified, the default I-QU PLUS-1 program source code library

file, I$QU*I$QULIB., will be used (the qualifier, I$QU, is a runtime configuration parameter

and may differ from site to site).

If Format 2 is used, the filename is required and must be an SDF data file. Format 2 is used

when adding a file instead of an element.

Examples:

ADD CUSTMAST/DEFS . Use default lib.

ADD MISC-DEFS FROM QLNK*PROCS

ADD * FROM DATA*FILE.

8.2 CLEAR

The CLEAR directive is used to set the internal error-flag off. The error-flag is turned on

anytime an error is detected.

8.3 COMPILE

The COMPILE directive causes I-QU PLUS-1 to resolve all program and procedure labels, all

IF/ENDIF pairs, and all PROCEDURE/ENDPROC pairs to complete the internal program and

prepare it for execution or saving. If any errors are detected during this process, further

processing of the program will not be attempted. The COMPILE is implied automatically if it

Control Directives I-QU PLUS-1 Programmer Reference

8-2 KMSYS Worldwide, Inc.

has not been called before a RUN or SAVE directive. There are no parameters associated

with the COMPILE.

8.4 CONV

The CONV directive is used to switch I-QU PLUS-1 into CONVersational mode. In this mode,

commands entered are edited by the command editor, and passed to the command

executor for immediate execution. The data storage area is not affected by switching to

CONVersational mode, thus allowing access to the results of program execution. However,

when switching from INPUT to CONVersational mode, the current object program is lost.

8.5 EXIT

The EXIT directive is used to terminate I-QU PLUS-1. If the user has not done a DML

DEPART, I-QU PLUS-1 will automatically execute a DEPART without ROLLBACK prior to

termination. PCIOS files that are open will be closed. The EXIT routine will also @FREE any

files automatically assigned by I-QU PLUS-1. If a default alternate print file was assigned, it

will be automatically @SYMed.

8.6 INDEX

The INDEX directive is used to assign a secondary data item index file. The INDEX directive

must specify the name of an I-QU PLUS-1 data item index file created by the QINDEX

processor, or by the I-QU PLUS-1 Processor. Only one secondary data item file may be

assigned at any given time.

Format:

INDEX [qualifier*]filename

INDEX may be abbreviated IND.

8.7 INIT

The INIT directive is used to reinitialize all data storage areas. All reserved variables will be

reset to initial values and all user variables will be de-allocated.

8.8 INPUT

The INPUT directive is used to switch I-QU PLUS-1 to INPUT mode. In this mode,

commands are entered, edited by I-QU PLUS-1’s command editor, and stored for execution.

When INPUT mode is entered, I-QU PLUS-1’s data storage area is left unchanged. The

program counter (PC) will be set to 1, causing any previous object program to be overlaid.

8.9 LISTOFF

The LISTOFF directive will suppress the listing of commands as they are edited by

I-QU PLUS-1.

The issuing of the LISTOFF directive in INPUT mode does not effect the LISTON/LISTOFF

condition of CONVersational mode and visa versa.

I-QU PLUS-1 Programmer Reference Control Directives

8-3 KMSYS Worldwide, Inc.

8.10 LISTON

The LISTON directive will cause resumption of the listing of commands as they are edited.

The issuing of the LISTON directive in INPUT mode does not effect the

LISTON/LISTOFF condition of CONVersational mode and visa versa.

8.11 LOAD

The LOAD directive is used to load a previously compiled program into I-QU PLUS-1’s

internal areas. Once loaded, the program may be executed using the RUN directive, or

saved to another object program file. See the RUN and SAVE directives for more

information.

Format:

LOAD program-name [FROM [qualifier*]filename]

LOAD may be abbreviated L.

If the FROM clause is omitted, I-QU PLUS-1 will attempt to load the object program from

the default file I$QU*I$QUOBJ (the qualifier, I$QU, is a runtime configuration parameter

and may differ from site to site).

8.12 OBJECT

The OBJECT directive will produce a formatted dump of all internal areas. The dump will not

destroy the current contents of the data storage areas.

8.13 PRINTER

The PRINTER directive is used to change the default device name to which alternate print

output will be @SYMed when the program is complete. The device is selected by the user

by entering a number between 0 and 4. Each number represents a device name specified

during the I-QU PLUS-1 dynamic configuration process (see the I-QU PLUS-1 Installation

and Operation Guide).

Format:

PRINTER site-printer-number

PRINTER may be abbreviated PR.

This directive applies only to alternate default print files.

8.14 RUN

The RUN directive is used to execute a I-QU PLUS-1 program that has been entered and

compiled, or to load and execute an object version of a program that has been compiled

previously and saved in object form (see SAVE directive).

Format:

RUN [program-name [FROM [qualifier*]filename]]

RUN may be abbreviated R.

If both program-name and the FROM clause are omitted, I-QU PLUS-1 will begin executing

the currently compiled program. If the program has not been previously compiled, the RUN

directive will cause an implicit compilation prior to execution.

Control Directives I-QU PLUS-1 Programmer Reference

8-4 KMSYS Worldwide, Inc.

If the FROM clause is omitted, I-QU PLUS-1 will attempt to load the object program from

the default object library, I$QU*I$QUOBJ (the qualifier, I$QU, is a runtime configuration

parameter and may differ from site to site).

Examples:

RUN

The above would require that a program had just been entered, and would force a

COMPILE if one had not already been done.

RUN CUST-QUERY

The above will load and run the object form of the program CUST-QUERY from the

default object file I$QU*I$QUOBJ.

RUN SALES FROM SALES*QLINK-OBJ

The above will load and run the object program SALES from the user-cataloged file

SALES*QLINK-OBJ.

8.15 SAVE

The SAVE directive is used to save the currently compiled I-QU PLUS-1 program, in object

form, as an OMNIBUS element. The object form includes all internal tables (including

D$WORK and S$WORK) required to execute the program. The SAVE directive may

immediately follow a COMPILE directive. An implicit COMPILE of the current program will be

performed if required.

Format:

SAVE program-name [INTO [qualifier*]filename]

SAVE may be abbreviated SA.

If the INTO clause is omitted, I-QU PLUS-1 will attempt to save the object program into the

default object library, I$QU*I$QUOBJ (the qualifier, I$QU, is a runtime configuration

parameter and may differ from site to site).

The SAVE directive may not be preceded by a RUN directive.

Examples:

SAVE CUST-QUERY

The above will save the currently compiled object program as CUST-QUERY in the

default file I$QU*I$QUOBJ.

SAVE SALES INTO SALES*QLINK-OBJ

The above will save the object of the currently compiled program as SALES in the

user-cataloged file SALES*QLINK-OBJ.

8.16 ?

This directive, entered as a question mark (?), displays the following information to the

conversational user:

 Current schema file, schema and subschema;

 The maximum object program size;

 The maximum number of variable indexes and how many are currently available;

 The size of the variable data storage area and how much is currently in use.

I-QU PLUS-1 Programmer Reference Control Directives

8-5 KMSYS Worldwide, Inc.

8.17 Object Program Considerations

Using object forms of programs will provide substantial performance improvements because

the INVOKE processing, command interpretation, and compilation are eliminated. An object

I-QU PLUS-1 program is sensitive to the same types of schema and subschema changes

that cause COBOL/DML programs to be recompiled; therefore, it may be necessary to

recompile and save I-QU PLUS-1 programs after certain schema and/or subschema changes

are implemented. In addition, certain changes in the configuration of the I-QU PLUS-1

processor may make an object program incompatible, requiring recompilation and saving.

The default object file I$QU*I$QUOBJ must be catalogued by the user site prior to use of

I-QU PLUS-1. The qualifier of the default object file may be changed when configuring the

runtime portion of I-QU PLUS-1.

Typically, while a program is in the development phase, full source would be processed by

I-QU PLUS-1, including an INVOKE, COMPILE and RUN. Once a program is tested and ready

for production use, it would be compiled and saved in object form (see SAVE directive). To

execute the program for production, only the RUN directive would be required as follows:

RUN program-name . <---Load and execute object.

data-images . <---Optional input data.

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-1 KMSYS Worldwide, Inc.

Chapter 9: General Procedural Commands

Procedural commands can be divided into seven categories:

 General Procedural Commands;

 COBOL File (PCIOS/SFS 2200) Handling Commands;

 Sort Interface Commands;

 Direct I/O Commands;

 DMS 2200 Data Manipulation Language Commands;

 RDMS 2200 Relational Database Commands;

 BIS DTM Interface Commands.

This chapter only describes the general procedural commands. The other categories will be

covered in chapters that follow.

The general procedural commands give the I-QU PLUS-1 user the ability to display and

change data in both the RDA and the variable data storage area.

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-2 KMSYS Worldwide, Inc.

9.1 ACCEPT

The ACCEPT command is used to set variables to values entered by the I-QU PLUS-1 user.

When executed, ACCEPT will display a prompt string defined by the programmer (if

specified), then read from the demand (terminal) or batch input stream or the system

console. I-QU PLUS-1 will set the specified variable to the value entered. Input is limited to

256 characters. Numeric input may contain a leading sign with no intervening spaces. The

optional prompt-string literal may not exceed 50 characters. It should only be used when

the CONSOLE option is specified.

Format:

ACCEPT variable [‘prompt-string’] [[FROM] CONSOLE] ;

 [AT END {BREAK | program-label}]

ACCEPT may be abbreviated A; while CONSOLE, CONS or CONSOL.

The AT END clause is optional. BREAK may only be used instead of a label when the

ACCEPT is contained within a defined procedure, or an in-line DO block.

Examples:

1. ACCEPT BIS-DATA AT END END-RUN

2. ACCEPT X 'Enter Product Id:' CONSOLE

Example 1 shows how a variable may be accepted from the terminal or runstream. If an AT

END condition occurs, control will be returned at the program label END-RUN.

In example 2, the ACCEPT will prompt and obtain input from the system console to put into

variable X.

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-3 KMSYS Worldwide, Inc.

9.2 BITMERGE

This command is used to combine a specified number of bits from three numeric variables

to form a result in a single numeric variable. For this operation, numeric variables are

viewed as unsigned single-word entities. The same variable may be repeated in any

position within the command syntax. There must be three counts specified. The first bit

count may be zero, but the sum of the three must add up to 36. Bits will be extracted from

the right-most positions of the source variables and deposited into the result variable

starting from the left.

Format:

BITMERGE result-variable ;

 FROM variable-name-1,variable-name-2,variable-name-3 ;

 (bit-count-1,bit-count-2,bit-count-3)

BITMERGE may be abbreviated BM or BITM.

The result-variable, variable-name-1, variable-name-2 and variable-name-3 must be

defined numeric variables. The bit-count-1, bit-count-2 and bit-count-3 must be given as

unsigned integer literals.

Examples:

1. The following code builds a database key with 10 bits for the area, 17 for the

page and 9 for the record number:

SET X = 121 . AREA CODE

SETY=50 . PAGE NUMBER

SETZ=1 . RECORD NUMBER

BITMERGE X FROM X,Y,Z (10,17,9) . MAKE DBK IN

2. The example below builds an area key in the pre-defined numeric variable G-

AKEY. The page number is put in the first half of the word, and the record

number in the second half. Y is assumed to contain the page number and Z the

record number.

BITMERGE G-AKEY FROM Y,Y,Z (0,18,18) . AREA KEY

The first reference to Y in the area key example above is a dummy reference

needed because all variables are required in the syntax.

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-4 KMSYS Worldwide, Inc.

9.3 BITSPLIT

The BITSPLIT command is used to disperse bits from one numeric variable into three

numeric variables. Each variable used is viewed as an unsigned single-word entity. The

same variable may be repeated in any position. There must be three-bit counts specified.

The first specified bit-count may be zero, but the sum of the three must equal 36. Bits will

be extracted from the source variable beginning from the right and deposited into the low-

order positions of the result variables.

Format:

BITSPLIT source-variable ;

 INTO variable-name-1,variable-name-2,variable-name-3 ;

 (bit-count-1,bit-count-2,bit-count-3)

BITSPLIT may be abbreviated BS or BITS.

The source-variable, variable-name-1, variable-name-2 and variable-name-3 must be

defined numeric variables. The bit-count-1, bit-count-2 and bit-count-3 must be given as

unsigned integer literals.

Examples:

1. Split a database key into its three components (area code, page number and

record number):

BITSPLIT C-DBK INTO X,Y,Z (10,17,9)

. SPLIT DBK

2. Isolate the high-order bit of a word:

SET X = RDA (21,4) UB9

. GET WORD FROM THE RDA

BITSPLIT X INTO X,Y,Z (0,1,35)

. ISOLATE BIT IN Y

IFY=1

DISPLAY 'BIT SET'

ELSE

DISPLAY 'BIT NOT SET'

ENDIF

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-5 KMSYS Worldwide, Inc.

9.4 BREAK

The BREAK command is used only in conjunction with a DO command. It is used to force an

immediate termination of an in-line DO or defined procedure, regardless of condition. For

an in-line DO, control passes to the statement following the DO/ENDDO pair. If the BREAK

is in a defined procedure, control passes to the command following the DO from which the

procedure was entered.

Format:

BREAK

BREAK may be abbreviated B.

Examples:

1. To BREAK out of a defined procedure:

 DO COUNT WHILE Z < 900

...

COUNT PROCEDURE

 ACCEPT X 'Enter a value:'

 IF X = 0

 DISPLAY 'Zero entered, end of run'

 BREAK

. Exit DO loop immediately

 ENDIF

 Z = Z + X

 ENDPROC

3. To BREAK out of a DO/ENDDO in-line loop:

...

. *** Search for first use type "A" or "G"

FETCH3 FIRST PART-USAGE SET

DO WHILE ERROR-NUM <> 7

 IF RDA PART-USE-TYPE = 'A'

 OR RDA PART-USE-TYPE = 'G'

 DISPLAY '*** FOUND IT ****'

 BREAK

 ENDIF

 FETCH3 NEXT PART-USAGE SET

ENDDO

...

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-6 KMSYS Worldwide, Inc.

9.5 CASE

The CASE command may be used to control case sensitivity for the DO, IF and SCAN

commands. The default is CASE ON (for compatibility with older levels of I-QU PLUS-1)

which implies that any test will be case sensitive. The CASE command is only significant

when checking ASCII alpha display data.

Format:

CASE {OFF | ON}

Examples:

1. ACCEPT REPLY 'Summary? Enter (Y)es/(N)o:' CONS

 CASE OFF

 IF REPLY = 'y' . "Y" or "y" will test true.

 DO SUMMARY

 ENDIF

 CASE ON

2. DEF F CMD-FILE SEQ 80,0

 DEF RDA COMMAND (1,7)

 :

 CASE OFF

 DO WHILE COMMAND <> 'process'

 READ CMD-FILE

 :

 ENDDO

3. FETCH3 FIRST CUSTOMER-REC CUSTMST AREA

 CASE OFF

 DO WHILE ERROR-NUM = 0

 SET X = 0 . Initialize length/result variable.

 SCAN RDA CUSTOMER-NAME 'JONES' X . SCAN for string

 IF X > -1 .Found?

 DISPLAY RDA CUSTOMER-NAME . Display name

 SET FIND-CNT = FIND-CNT + 1 . Count it

 ENDIF

 FETCH3 NEXT CUSTOMER-REC CUSTMST AREA

 ENDDO

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-7 KMSYS Worldwide, Inc.

9.6 CLEARSCREEN

The CLEARSCREEN command is designed to be used in an I-QU PLUS-1 program that would

be run from a demand terminal. It outputs the ASCII control sequence ESC, "e", ESC, "M",

which is a cursor to home and erase display on most terminals that support UNISCOPE

(UTS) protocol.

Format:

CLEARSCREEN

CLEARSCREEN may be abbreviated CLS or CLEAR.

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-8 KMSYS Worldwide, Inc.

9.7 CONNECT

The CONNECT command allows an I-QU PLUS-1 program to connect to the TIP on-line

system. The command is only required when handling recoverable TIP/FCSS or TIPDMS

files with the DIO command. The command may not be used while IMPARTed to DMS. This

command may not be used to change the application association (application number).

Format:

CONNECT [|| {TO [APPLICATION] | APPLICATION} application-number | ;

 AT level-number | ;

 OPTION recovery-options ||]

CONNECT may be abbreviated CONN, with APPL for APPLICATION and OPT for OPTION.

The application-number must be from 1 to 9. If not specified, application 0 is implied.

The level-number is the connection level which defines which TIP facilities are available to

this program. Valid values are 1 through 3.

The recovery-options are specified as an integer number and the specified bits must be as

discussed for the CONNECT TIP primitive. If not specified, “no recovery” is implied and the

application-number is ignored by the EXEC.

No attempt is made to detect or prevent redundant CONNECT commands. I-QU PLUS-1 will

issue requests to MCB/EXEC as submitted.

For more information, refer to the OS 2200 Transaction Processing Programming Reference

Manual and the OS 2200 Transaction Processing Administration and Operations Reference

Manual.

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-9 KMSYS Worldwide, Inc.

9.8 CSF

The CSF command allows the I-QU PLUS-1 user to submit any valid CSF image to the

operating system. The status returned from the operating system will be placed in the

numeric variable specified. I-QU PLUS-1 will not attempt to edit the image being submitted,

so care must be taken to ensure that the format is acceptable to the operating system.

Format:

CSF status-variable {'CSF-image-literal' | CSF-image-variable}

CSF may be abbreviated CS.

Example:

CSF X '@ASG,A MY*FILE.,T,REEL01' . Assign a file

IF X < 0 . Test status

 FACERR X . Display reasons

 STOP EXIT

ENDIF

...

CSF X '@START RUNFILE.LIST-DB ' . Start a run

IF X NOT = 0

 DISPLAY 'Start failed, status follows:'

 DUMP X

ENDIF

The following control statements may be issued:

@ADD @CAT @LOG @RSTRT @USE

@ASG @CKPT @MODE @START

@BRKPT @FREE @QUAL @SYM

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-10 KMSYS Worldwide, Inc.

9.9 DATE

The DATE command is used to reset the related DATE reserved variables to the current

date. The DATE command may also be used to translate a user-furnished date from Julian

to Gregorian or from Gregorian to Julian. The DWTIME option will convert a value in

DWTIME$ format to Gregorian and Julian formats and set a time variable.

Format:

DATE [{date-variable | RDA RDA-reference} TO ;

 {JULIAN | GREGORIAN | DWTIME}]

DATE may be abbreviated DA.

This command will set the values of the following predefined variables:

Variable Data Type Format

DATE Alphanumeric YYYY/MM/DD

DATE-NUM Numeric YYYYMMDD

YEAR Numeric YYYY

MONTH Numeric MM

DAY Numeric DD

J-DAY Numeric YYYYDDD

TIME (DWTIME option only) Alphanumeric HH:MM:SS.DDD

If the DATE command is used with no parameters, all date variables will be set to the

current date.

The date-variable or RDA-reference must be defined as numeric and contain a positive

numeric integer in the form YYMMDD or YYYYMMDD if converting to Julian, or YYDDD or

YYYYDDD if converting to Gregorian. If the year is only two digits (YY), the century is

derived from today’s date. For example, if today were 2000-01-01 and the date variable

contained 940729, DATE would reveal 2094/07/29.

When using the DWTIME option, the date-variable or RDA-reference must be defined as

ASCII alphanumeric display for 8 bytes (characters); however, they must contain an ASCII

aligned binary value, which represents nanoseconds since midnight, December 31, 1899.

This value is said to be in DWTIME$ format and is used internally in such places as the

ASCII System Log, the Universal Data System, LINC 2200 applications, etc. In addition to

setting the six reserved variables associated with a date (see above), the DWTIME option

also sets the reserved variable TIME.

If the date cannot be converted, the result variables will be set to zero.

Examples:

1. The DATE command used alone to set the current date into all date variables:

DATE

2. Use the DATE command to determine if a given year is a leap year. Assume the

variable ENTRY-YEAR is 2000.

DEF A ENTRY-YEAR 4

DEF RDA LEAP-A (4001,6)

DEF RDA LEAP-N (4001,6) SN9

...

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-11 KMSYS Worldwide, Inc.

ACCEPT ENTRY-YEAR 'Enter year: '

TD ENTRY-YEAR '060' +

SET RDA LEAP-A = $PBUFF

DATE RDA LEAP-N TO GREGORIAN

IF DAY = 29

TD YEAR ' is a leap year!'

...

The answer would be:

2000 is a leap year!

3. Convert the date in the variable ST-DATE to Julian. Assume ST-DATE contains

940719. J-DAY contains the Julian result. The value of ST-DATE will be set up in all

other date variables:

DEF N ST-DATE

...

DATE ST-DATE TO JULIAN

D 'START DATE ' DATE +

ED J-DAY ' IS JULIAN 99/999.'

The result would be as follows:

START DATE 1994/07/19 IS JULIAN 1994/200.

4. Convert the DWTIME$ formatted RDA reference, DWTIME-OF-START:

DEF RDA DWTIME-OF-START (*,8)

...

DATE DWTIME-OF-START TO DWTIME

D 'The program started on ' DATE +

D ' at ' TIME

The above example will yield results similar to the following:

The program started on 1994/09/25 at 16:17:41.041

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-12 KMSYS Worldwide, Inc.

9.10 DATESET

The DATESET command is used to convert a variable or RDA reference to a format suitable

for displayed output or arithmetic operations.

Format:

DATESET {variable | RDA RDA-reference} ;

 [FORMAT {$DATEn | 'format-literal ' | format-variable}] = ;

 {variable | RDA RDA-reference} ;

 [FORMAT {$DATEn | 'format-literal ' | format-variable}]

The format field on either the sending or receiving side of the equal sign can be any of three

choices, or omitted entirely if the default format is desired:

1. $DATEn provides a set of predefined date formats that should handle the majority of

date formatting tasks. The “n” can be 0-8 for standard BIS date formats, or 20-23

for KMSYS Worldwide defined formats. These formats are defined in the table below.

2. The format-literal can be used to replicate the $DATEn formats or create other user-

defined formats. The descriptors necessary to create these strings are defined in the

date descriptor table on the following page.

3. The format-variable must be defined as an alphanumeric variable. The use of the

format-variable allows the programmer to define format strings that may be set at

execution time, which implies that the sending or receiving date string format is not

necessarily known at compile time.

4. The default format (the FORMAT clause is omitted) is an internal Julian date based

on 1/1/0001. Where 1 = 1/1/0001 , 2=1/2/0001 , 59 = 2/28/0001, etc. This

format should be used when performing date calculations.

When converting dates from a 2-digit year to a 4-digit year, I-QU PLUS-1 assumes the

missing century portion of the year to be the current century. Likewise, if a 4-digit year

is input and the century portion is “00”, the current century will be assumed. It must be

noted that because of these assumptions, 4-digit years in the range of “0001” through

“0099” will not convert properly to an internal Julian date.

The following $DATEn formats are predefined:

$DATEn Format Type Example

$DATE0 YMMDD (Y1M2D2) N 20327

$DATE1 YYMMDD (Y2M2D2) N 920327

$DATE2 DD MMM YY (D2BM3BY2) AN 27 MAR 92

$DATE3 YDDD (Y1D3) N 2087

$DATE4 YYDDD (Y2D3) N 92087

$DATE5 DDMMYY (D2M2Y2) N 270392

$DATE6 MM/DD/YY (M2/D2/Y2) AN 03/27/92

$DATE7 MMMMMMMMM DD,YYYY (M9BD2,Y4) AN MARCH 27,1992

$DATE8 MMDDYY (M2D2Y2) N 032792

$DATE20 YYYYMMDD (Y4M2D2) N 19920327

$DATE21 YYYYDDD (Y4D3) N 1992087

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-13 KMSYS Worldwide, Inc.

$DATEn Format Type Example

$DATE22 DDMMYYYY (D2M2Y4) N 27031992

$DATE23 MMDDYYYY (M2D2Y4) N 03271992

The predefined formats have a data type of either numeric (N) or alphanumeric (AN). A

numeric format may be used on a numeric or alphanumeric variable or RDA reference;

however, an alphanumeric format may only be used on an alphanumeric variable or RDA

reference. Consider the following alpha variable, numeric RDA reference and DATESET

commands:

DEFINE A HDRDATE 17

DEFINE RDA PODATE (10,6) UN9

 DATESET HDRDATE FORMAT $DATE8 = RDA PODATE FORMAT $DATE1 . Correct

 DATESET HDRDATE FORMAT $DATE8 = RDA PODATE FORMAT $DATE6 . Incorrect

The first DATESET command is correct. Both $DATE8 and $DATE1 are numeric and can

reference either a numeric field (PODATE) or an alpha field (HDRDATE). The second

DATESET command will cause an error stating that the alphanumeric format ($DATE6) is

not compatible with the numerically defined field (PODATE).

The following date descriptors are allowed in the format-literal or format-variable:

Descriptor Type Explanation

- A Dash: Allows a dash in the input field, or inserts a dash in the

output field.

, A Comma: Allows a comma in the input field, or inserts a comma in

the output field.

. A Period: Allows a period in the input field, or inserts a period in the

output field. The period is used in European date formats which

are normally formatted as D2.M2.Y2 (e.g., “31.01.94”).

/ A Slash: Allows a slash in the input field, or inserts a slash in the

output field.

B A Blank: Allows a blank in the input field, or inserts a blank in the

output field. An actual blank or space character can also be used

as the descriptor (e.g., “M9 D2, Y4” will produce the same result as

“M9BD2,BY4”).

D2 N Day of the Month: Valid values are in the range of 01-31; however,

the value must not exceed the maximum number of days allowed

for the specified month.

D3 N Day of the Year: Valid values are in the range of 001-366;

however, 366 is only valid for a leap year.

I N Internal Julian Date: This format is the default when the FORMAT

clause is omitted. This descriptor may not be used in combination

with any other date descriptor. In this format, all dates are relative

to the first day of year one.

M2 N Month of the Year: Valid values are in the range of 01-12.

M3 A Month of the Year Abbreviation: This format will alway be 3

alphabetic characters (e.g., “JAN”, “FEB”, etc.).

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-14 KMSYS Worldwide, Inc.

Descriptor Type Explanation

M9 A Alphabetic Month of the Year: The longest month name is 9

characters. Shorter month names will be space filled to the right.

W1 N Day of the Week: Valid values are in the range of 1-7 where 1 is

Sunday, 2 is Monday, etc.

W3 A Day of the Week Abbreviation: This format will alway be 3

alphabetic characters (e.g., “SUN”, “MON”, etc.).

W9 A Alphabetic Day of the Week: The longest weekday name is 9

characters. Shorter names will be space filled to the right.

Yn N Year: n is the number of positions (1-4) required to represent the

year. Valid values are in the range of 0001-2100. If n is less than

4, the high order positions of the year are truncated (e.g., if Y2 is

specified, 1994 would be formatted as “94”).

Each date descriptor is classified as either a numeric (N) or alphabetic (A) data type. If all

the descriptors used in a format string are “A”, the format is strictly alphabetic and can not

be used with numeric variables or RDA references. If the string contains both “A” and “N”

types, the format is alphanumeric and must be used with alphanumeric variables or RDA

references. If all descriptors are “N”, the format is numeric and may be used with both

numeric or alphanumeric variables and RDA references.

The maximum number of date descriptors allowed in one format-literal or format-variable is

six (6).

During execution, the DATESET instruction takes the input variable or RDA reference on the

sending side of the equal sign and converts it to an internal Julian date based on the

supplied format string or variable. If there is NOT enough information in the input data to

exactly determine a specific date the missing values are used from today’s date.

Assume the DATESET command looked something like the following:

DATESET AA1 FORMAT $DATE7 = AA2 FORMAT 'D2'

In this case, DATESET will only have the day of the month to work with. The month and

year will be taken from the system clock and used to complete the date. This date will then

be used to format the AA1 variable on the receiving side of the expression according to the

$DATE7 format string.

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-15 KMSYS Worldwide, Inc.

Given the variety of data types and different format strings that can be used together with

this instruction, it makes sense that some error may occur that the DATESET instruction

cannot handle. In this case, DATESET will set the global variable ERROR-NUM to an error

number (following table). Upon successful completion of the DATESET command, the

ERROR-NUM variable will be 0. ERROR-NUM should be checked after each execution of this

instruction.

ERROR-NUM Description

0 No error status, the instruction completed successfully.

1
The format string does not contain any characters. This should

only happen when the format string is empty.

2 Invalid descriptor in format string.

3 Invalid length for descriptor. This will occur if any descriptor is

given with an invalid number of characters. For example if a long

Month is required but the specification is M8 this error will be

returned.

4
Invalid number of descriptors in the format string. The number of

date descriptors is limited to 6.

5
Not enough characters in format string. This will happen if for

example a “W” is used without a field width specified.

6 Format string contains a descriptor that can only occur alone.

This will only happen when the “I” descriptor occurs with any

other descriptor.

11
Invalid descriptor type for a numeric string. The type of the

variable does not match the type indicated in the format string.

12
The sending field format is numeric but contains an alphabetic

month descriptor.

13
The sending field format is numeric but contains an alphabetic

day of the week descriptor.

21
RDA variable of type MAPNUM on the receiving side of the equal

sign is not large enough to hold the result of date formatting.

31 Year is out of range, less than 0001.

32 Month is out of range, must be 1-12.

33
Day of month is invalid for month specified; this error considers

leap year for the number of days in February.

Example 1:

DEF A AA1 20

DEF N NN1

AA1 = 'MARCH 23,1992'

DATESET NN1 FORMAT $DATE1 = AA1 FORMAT $DATE7

 . INPUT IN M9BD2,Y4

TD AA1 ' CONVERTS TO ' NN1

This example will produce the following result:

MARCH 23,1992 CONVERTS TO 920323

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-16 KMSYS Worldwide, Inc.

Example 2:

DEF A CURR-DATE 18

DATE

DATESET CURR-DATE FORMAT 'M9BD2,BY4' = ;

 DATE-NUM FORMAT $DATE20

TD "Today's date is " CURR-DATE '.'

This example will produce the following result:

Today's date is AUGUST 12, 1994.

Example 3:

DEF RDA MAPDATA (1,132)

DEF RDA MAPDATE (14,8) MAPNUM . MM/DD/YY format

DEF A MAPVAR 132

ACCEPT MAPVAR AT END BREAK

RDA MAPDATA = MAPVAR

DATESET X = RDA MAPDATE FORMAT $DATE6

 . Convert to internal Julian day for increment

X = X + 120 . Add 120 days to the date

DATESET RDA MAPDATE FORMAT $DATE6 = X

 . Convert to MM/DD/YY

DISPLAY RDA MAPDATE

If the input was “02/15/92”, this example will produce the following result:

06/14/92

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-17 KMSYS Worldwide, Inc.

9.11 DECIMAL

The DECIMAL command may be used to control decimal point sensitivity dynamically.

Decimal sensitivity is initially ON by default, but may be turned off at any point in the

program using this command. This command exists primarily for compatibility with older

versions of the processor in which decimal point sensitivity did not exist.

Format:

DECIMAL {ON | OFF}

DECIMAL may be abbreviated DEC.

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-18 KMSYS Worldwide, Inc.

9.12 DISCONNECT

The DISCONNECT command allows an I-QU PLUS-1 program that has issued a previous

CONNECT command to detach itself from the TIP on-line system.

Format:

DISCONNECT

DISCONNECT may be abbreviated DIS.

No attempt is made to detect or prevent redundant DISCONNECT commands. I-QU PLUS-1

will issue requests to MCB/EXEC as submitted.

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-19 KMSYS Worldwide, Inc.

9.13 DISPLAY

The DISPLAY command is used to display the contents of user or reserved variables or the

contents of the RDA. DISPLAY may also be used to display alphanumeric literals.

Multiple display commands using the “+” symbol may be entered to build, but temporarily

suppress, output. When “+” is encountered, data is moved into the print buffer, but no

output is produced. When a DISPLAY without the “+” is executed, the data is moved to the

print buffer and the contents of the print buffer are printed. (See the SET command to

determine how to capture the contents of the print buffer, $PBUFF).

An output column may be specified by entering an integer or numeric variable following the

command keyword DISPLAY. If the numeric variable is specified, it must be preceded by

the “at” symbol (@). If no output column is specified, data is moved into the next available

position of the print buffer. If a column is specified, data is moved to the specified position

of the print buffer and the next available position will become the position following the

data.

If automatic TAB character insertion is on (see TABS command), a tab character will be

inserted in the first output position, followed by the data to be displayed.

Format:

DISPLAY [[column-literal | @numeric-variable] {RDA RDA-reference | ;

 {variable-1 | 'alpha-literal-1'} … [variable-4 | 'alpha-literal-4'] } [+]]

DISPLAY may be abbreviated D.

A DISPLAY with no other options will generate a blank line.

Only one RDA-reference may be used within a single DISPLAY. However, from one to four

alpha strings (alpha-literal-n) and variables (variable-n), or a combination of each, may be

displayed using a single DISPLAY command.

Decimal numeric variables will be edited as 18-digit integers, zero suppressed with leading

minus sign (COBOL edit picture ‘–––––––––––––––––9’). Floating-point numeric variables

will be displayed in general floating-point format. No other formatting will take place.

When using an RDA-reference in a DISPLAY, specified fields within the RDA may be printed

using either direct RDA reference or data item name (if the data item index is available).

Examples:

Example 1: Display two literals on the same line:

DISPLAY '**** LIST OF PRODUCTS IN THE CURRENT ' +

DISPLAY 'DATABASE *** '

. Use the + to concatenate the output

. of two DISPLAY.

or

DISPLAY '**** LIST OF PRODUCTS IN THE CURRENT ';

 'DATABASE *** '

. Use the ; immediately after the second string

. delimiter (') to continue the literal.

or

DISPLAY '**** LIST OF PRODUCTS IN THE CURRENT ' ;

 'DATABASE *** '

. Use the ; preceded by at least one space

. to continue the command.

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-20 KMSYS Worldwide, Inc.

Regardless of the method used, the output will appear as follows:

**** LIST OF PRODUCTS IN THE CURRENT DATABASE ****

Example 2: Tab to column 5 and display three totals.

DISPLAY 5 '*** Totals for X, Y and Z are:'XYZ

Example 3: Display two lines containing one total on each.

DISPLAY 'VALUE OF X = ' X

DISPLAY 'VALUE OF Y = ' Y

Example 4: Display the same information as in Example 3, but on one line.

DISPLAY 'VALUE OF X = ' X ' AND VALUE OF Y = ' Y

Example 5: Display characters 1 through 8 of the RDA.

DISPLAY RDA (1,8)

Example 6: Display a field in the RDA beginning in output position 5.

DISPLAY 5 RDA PRODUCT-ID

Example 7: Display an RDA field with the output beginning in the position designated

by the numeric variable, X.

DISPLAY @X RDA PRODUCT-ID

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-21 KMSYS Worldwide, Inc.

9.14 DO

The DO command can be used in two ways. First, the DO command may be used like the

COBOL PERFORM statement. Used in this manner the DO must reference a defined

procedure. A procedure must begin with a PROCEDURE label command and end with an

ENDPROC command. If the optional WHILE/UNTIL clause is omitted, the procedure will be

executed until the ENDPROC command is encountered, or a BREAK command is executed.

If the WHILE/UNTIL clause is used, the procedure will be repeated per the condition

specified (see below).

The second way in which the DO may be used is to control the execution of a group of

commands in-line. In this manner, commands following the DO through a matching ENDDO

command are executed repeatedly. This is called an in-line DO block.

Format-1, DO a defined procedure:

DO procedure [{UNTIL | WHILE} conditional-expression]

Format-2, DO in-line code:

DO [{UNTIL | WHILE} conditional-expression]

 commands(s)

ENDDO

Where conditional-expression may take the following form:

{numeric-literal | variable | RDA RDA-reference} ;

 { [NOT] {= | < | >} | <> | <= | >=} ;

 {numeric-literal | variable | special-name 'alpha-literal ' | RDA RDA-reference}

Conditional expressions may be in any form acceptable to the IF command including the

AND/OR extensions. Please see the IF command for a complete discussion of conditional

expressions.

ENDDO may be abbreviated ENDD.

Format-1 Rules:

DOing a procedure differs from an in-line DO in that it may be entered from several

different places throughout the user’s program. The procedure is formally defined by

the PROCEDURE and ENDPROC commands. The format for defining a procedure is:

Procedure-name PROCEDURE

 Command(s)

[label] ENDPROC

PROCEDURE may be abbreviated PROC, with ENDP for ENDPROC.

If the procedure is entered with a DO UNTIL command, the condition will be tested

each time the ENDPROC is executed. If the condition is met (TRUE), control will go

to the command following the DO. Otherwise, the PROCEDURE will be reentered

from the beginning. Using a DO UNTIL, the procedure will always be executed at

least once.

If the procedure is entered with a DO WHILE command, the condition will be tested

at the beginning (at the PROCEDURE command). If the condition is not true, control

returns to the command following the DO, otherwise the procedure is reentered.

A procedure may be exited immediately by executing a BREAK command. The

BREAK simply causes control to be passed back to the next command following the

DO regardless of conditions.

A PROCEDURE / ENDPROC pair may not occur within a defined procedure (may not

be nested). A PROCEDURE may call (DO) other procedures, including itself.

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-22 KMSYS Worldwide, Inc.

Format-2 Rules:

The DO must be terminated by a matching ENDDO. If no WHILE/UNTIL clause is

used, the DO block will be repeated until a BREAK command is executed; otherwise,

the same WHILE/UNTIL rules apply as in format-1. In-line DO blocks may be nested

up to 50 levels.

Examples:

DOing defined PROCEDURES (Format-1):

MAIN-CONTROL

 X = 0

 DO PROC-1 . See NOTE-1

 X = 0

 DO PROC-1 UNTIL X = 100 . See NOTE-2

 . . .

 DO PROC-1 WHILE X < 900 . See NOTE-3

 . . .

PROC-1 PROCEDURE . Procedure label

 X = X + 1

 IF X > 500

 BREAK . Unconditional exit

 ENDIF

 DISPLAY X

 ENDPROC

NOTE-1: PROC-1 will be performed 1 time.

NOTE-2: PROC-1 will be performed 100 times and the values of X displayed

will be in the range from 1 through 100.

NOTE-3: PROC-1 will be performed 400 times and the values of X displayed

will range from 101 through 500. The WHILE condition will never

be met because of the BREAK command within the IF.

DOing in-line commands (Format-2):

. . .

 FETCH4 NEXT PART-MAST PARTS AREA

 FETCH3 FIRST PART-USAGE SET

 DO WHILE ERROR-NUM = 0 . See Note-4

 DISPLAY "Usage codes for step number:" +

 DISPLAY PU-STEP-NO

 SUB1 = 1

 DO WHILE SUB1 <= PU-NO-ENTS . Nested DO

 AND PU-USE-CODE :SUB1 <> $ALPHA

 DISPLAY PU-USE-CODE :SUB1

 SUB1 = SUB1 + 1

 ENDDO

 FETCH3 NEXT PART-USAGE SET

 ENDDO

. . .

NOTE-4: If the FETCH3 FIRST results in an ERROR-NUM = 13 (no members

in the set), the entire DO block will be skipped.

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-23 KMSYS Worldwide, Inc.

9.15 DUMP

The DUMP command is used to produce an octal, and ASCII, dump of the contents of the

RDA, a specified variable or database data name (DBDN), or to take a full object dump

programmatically (same dump as produced by the OBJECT directive). When DUMPing the

RDA, the user may specify any range within the RDA either by specific word boundaries, or

by DMS 2200 record, BIS DTM record (queue-alias) or PCIOS file name. If DUMP is given

with no parameters, the entire RDA will be dumped. An octal DUMP of a variable will

include the internal control portions as well as the data. A DBDN DUMP will include only the

current contents of the specified database data name. If the DUMP ALL is used, a full object

dump will be taken and program execution will resume.

Format:

DUMP { [start-word] number-of-words | filename | record-name | queue-alias | ;

 variable | DBDN database-data-name | ALL }

DUMP may be abbreviated DU.

Examples:

DUMP 20 . Dump words 1 through 20.

DUMP 21,4 . Dump words 21 through 60.

DUMP PART-MASTER . Dump PART-MASTER record area.

DUMP ALL . Take a full object dump and

 . continue processing

DUMP DBDN MS-ANAME . Dump a database data name

DUMP BIS-ROW . Dump queue-alias retrieved/sent

 . via DTM

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-24 KMSYS Worldwide, Inc.

9.16 EDIT

The EDIT command is used to display either numeric variables or numeric data in the RDA

using an edit mask.

Using the EDIT command, one numeric variable or RDA data item may be edited and moved

to the print buffer. If the item contains implied decimal positions, it will be scaled to match

the decimal position in the edit mask.

Format:

EDIT ['column-literal ' | @numeric-variable] ;

 {numeric-variable | RDA RDA-reference} ;

 [*] {'edit-mask-literal ' | edit-mask-variable} [+]

EDIT may be abbreviated ED.

Edit masks are furnished as a literal or alpha variable containing mask characters. The edit

mask is similar to that used in COBOL. The following edit mask characters may be used for

editing decimal numbers:

1. Insertion characters:

Any character may be used as an insertion character; however, there are two special

insertion characters, which are:

“B” blank;

“H” hyphen (-).

2. Zero suppression control characters are:

“Z” suppress leading zeros;

“9” display leading zeros.

3. Sign control characters are:

“+” print plus or minus sign depending on the value of the number;

“–” print minus sign only if the number is negative.

4. Floating characters are:

“$” print dollar sign to the left of the most significant digit when the dollar sign is

the first character of the mask and followed by the character, “Z” ;

“–” for negative numbers, print minus sign to the left of the most significant digit

when the minus sign is the first character of the mask and is followed by the

character, “Z”.

Decimal number edit mask usage examples:

The number -1234, EDITed with a mask of ‘9999+’ would print as:

‘1234-’.

The same number EDITed with a mask of ‘ZZ,ZZZ’ would print as:

‘ 1,234’.

The number, 5678.909, EDITed with a mask of ‘ZZZ.99+’ would print as:

‘678.91+’

Note: Number was scaled to mask and rounded.

The number, -1234, EDITed with a mask of ‘$ZZZ,ZZZ’ would print as:

‘$1,234’

The same number, EDITed with a mask of ‘$999,999’ would print as:

‘$001,234’

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-25 KMSYS Worldwide, Inc.

The same number , EDITed with a mask of ‘-ZZZ,ZZZ’ would print as:

‘-1,234’

The same number, EDITed with a mask of ‘-999,999’ would print as:

‘-001,234’

Output may be temporarily suppressed by using the “+” symbol, as with the DISPLAY

command. Column number specifications and automatic TAB character insertions also

function as with the DISPLAY command.

An option may be used to indicate when a value overflows an edit mask. If an asterisk (*)

is placed in front of the edit mask literal or variable, and an overflow condition occurs, the

entire output (allocated by the edit mask) will be filled with asterisks. Without the asterisk,

if the numeric value being edited is greater than the significant output positions allowed by

the edit mask, the remaining high-order digits are truncated.

Examples:

X = 1234567

.

EDIT X 'ZZ,ZZ9.99' . No overflow indication

EDIT X * 'ZZ,ZZ9.99' . Overflow indication

The above would produce the output “34,567.00” (high-order truncated) from the

first EDIT, and “*********” (indicating overflow has occurred) from the second

EDIT.

The use of the overflow indication option does not affect the rounding or truncation

of low-order digits. The numeric value is always scaled to match the decimal

precision of the edit mask, and either rounded or truncated as necessary depending

upon whether or not rounding is turned on.

There are three possible methods to edit floating-point numbers: fixed decimal format,

generalized format and scientific format. In each case, the total output width and maximum

precision will be specified. The floating-point edit mask formats are as follows:

Fixed decimal format:

Fw.p

Generalized format:

Gw.p

Scientific format:

Sw.p

Where “w” is an integer in the range of 1 to 32 that specifies the output field width,

and “p” is an integer in the range of 0 to “w” that specifies the maximum precision to

be displayed. In generalized format, “p” indicates the total number of significant

digits.

In scientific format, the rules used to display images are as follows:

1. If w – p <= 5 and the value being displayed is positive or if w – p <= 6 and the

value is negative, “p” significant digits are displayed. They will always be left

justified. The exponent is displayed left justified and space filled up to w – p – 2

digits if positive or w – p – 3 digits if negative.

2. If w – p > 5 were the value is positive or w – p > 6 and the value is negative, “p”

significant digits are displayed right justified and space filled with the sign

preceding the value if negative. The exponent is displayed right justified and

zero filled.

Examples:

Example 1: Assume X contains the value -12345.

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-26 KMSYS Worldwide, Inc.

EDIT X 'ZZ,ZZZ.99+' +

DISPLAY'/'+

EDIT X '-999999'

The output of the above commands would look like this:

Columns:1...5....10...15...20

 12,345.00- / -012345

Example 2:

DEF A PROD-MASK '999B9999' . Product-id

 . EDIT MASK ...

EDIT 3 RDA PRODUCT-ID PROD-MASK . Display EDITed

 . product-id.

If product-id is 1012046, output from the above EDIT statement will print starting in

column 3 as follows:

Columns:1...5....10...15...20

 101 2046

Example 3:

EDIT RDA (6,4) '99/99'

If positions 6 through 9 of the RDA contain 0922, output from the above EDIT

statement will print starting in column 1 as follows:

Columns:1...5....10...15...20

 09/22

Example 4: Edit the value of Y into the column designated by X:

EDIT @X Y '-ZZZ,ZZZ'

If X = 5 and Y = -2424, output from the command would appear as follows:

Columns:1...5....10...15...20

 -2,424

Example 5: Floating-point numeric editing. Given the following:

DEFINE FP FLOAT-NUM 1.2400E+2

 EDIT FLOAT-NUM 'F9.5' . Edit fixed decimal format

 EDIT FLOAT-NUM 'S9.5' . Edit scientific format

 EDIT FLOAT-NUM 'G9.5' . Edit generalized format

The edited output would look like this:

Columns:1...5...10...15...20

 124.00000

 1.2400E+2

 124.00

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-27 KMSYS Worldwide, Inc.

9.17 FACERR

This command is used to decode and display the facility status word after execution of the

I-QU PLUS-1 CSF command. The specified variable must be numeric. FACERR will print the

diagnostic message associated with each bit set in the facility status word. The display is

directed to the current output (see the PCONTROL command).

Format:

FACERR CSF-status-variable

FACERR may be abbreviated FA or FE.

Example:

CSF X '@ASG,A MY*FILE.' . Assign file

IF X < 0 . Fac reject?

 FACERR X . Display reason

 STOP 99 . Quit

ENDIF

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-28 KMSYS Worldwide, Inc.

9.18 GO

The GO command is used to transfer control of command execution to another point within

the I-QU PLUS-1 program.

Format:

GO [TO] program-label

Example:

. A SIMPLE LOOP...

START

 SET X = X + 1 . START IS A PROGRAM LABEL

 IF X = 10

 DISPLAY 'DONE'

ELSE

 GO START . GO BACK TO START

ENDIF

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-29 KMSYS Worldwide, Inc.

9.19 IF

The IF command is used to control conditional execution of I-QU PLUS-1 commands. The IF

must be used in conjunction with an ENDIF command. If a false condition results, control is

passed to the command following the corresponding ELSE or ENDIF. IF/ENDIF pairs may be

nested to 10 levels.

Format:

IF conditional-expression

 [{AND | OR}] conditional-expression

 command(s)

[ELSE]

 command(s)

ENDIF

Where conditional-expression may be in the following forms:

{numeric-literal | variable | RDA RDA-reference} ;

 { [NOT] {= | < | >} | <> | >= | <=} ;

 {numeric-literal | variable | special-name | 'alpha-literal ' | RDA RDA-reference}

ELSE may be abbreviated EL, with ENDI for ENDIF.

When comparing two variables, both must be the same data type. When comparing two

alphanumeric strings (variables or RDA), the length of the shortest argument will stop the

comparison. For example: “ABCDEF” = “ABC” is true; “ABCDEF” = “ABCx” is false.

Alphanumeric string comparisons that use an “is less than” (<) or “is greater than” (>)

operator will use one of two collating sequences depending upon the character set of the

two operands. If both operands are ASCII, the ASCII collating sequence will be used. If

either or both operands are FIELDATA, the FIELDATA collating sequence will be used.

When the IF command is used to test an RDA reference that has a data type of MAPNUM,

the reference must be tested as a numeric item (e.g., IF RDA QTY-ON-HAND = 0).

The IF command may also be used to test for HIGH-VALUES, LOW-VALUES, ALPHABETIC, or

NUMERIC values by using one of the following special names instead of an alphanumeric

literal:

$HIVALS All ASCII 177 (or 377) or Fieldata 77.

$LOVALS All binary zeroes.

$ALPHA
All characters within ranges “A” through “Z”, “a” through “z”

(ASCII only) and space.

$NUM All characters within range 0 through 9.

$SPACES All spaces.

These special names may be used only with an equal or not equal test.

The IF command may be extended by using AND and OR commands immediately following

the IF command. AND/OR logic operates as follows: all conditions connected by ORs are

evaluated separately; all conditions connected by ANDs are evaluated together.

Consider the following compound condition:

IF A = 1

AND B = 2

OR C = 3

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-30 KMSYS Worldwide, Inc.

If A is 1, B is 3, and C is 3, the condition will be considered TRUE. This is because

“C = 3” was true and ORed with “A = 1 and B = 2” that was false. This I-QU

PLUS-1 condition is interpreted the same as “IF (A = 1 AND B = 2) OR C = 3”

would be by COBOL.

The ELSE may also be used in conjunction with the IF. The only restrictions on the use

of AND, OR and ELSE is that they must be entered on separate command lines.

Examples:

FETCH3 NEXT PART-USAGE SET . Fetch next of set

IF ERROR-NUM = 7 . End of set ...

OR ERROR-NUM = 13 . OR set empty

 IF ERROR-NUM = 7 .Isit7?

 GO END-SET . ERROR-NUM is 7

 ELSE

 GO ERROR-ROUTINE . Must be 13

 ENDIF

ENDIF

GO PROCESS-REC . Continue processing

...

In the following, C-O-R is a 30-character alpha-string variable. If it contains any string that

begins with “PRODU”, the IF will be evaluated as true.

DEF RDA NEW-RATE (*,10) MAPNUM .00

DEF N MAX-RATE 25.00

...

 IF C-O-R = 'PRODU'

 GO

 ENDIF

 IF RDA NEW-RATE > MAX-RATE

 AND RDA PRODUCT-TYPE = 'A'

 DO RATE-TOO-HIGH

 ENDIF

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-31 KMSYS Worldwide, Inc.

9.20 PCONTROL

The PCONTROL command is used to direct the disposition of I-QU PLUS-1 print output.

I-QU PLUS-1 output may be directed to PRINT$ (the terminal in demand mode), the system

console, or an alternate print file assigned by I-QU PLUS-1. In addition, print may be

directed to both an alternate print file and PRINT$. PCONTROL functions are defined as

follows:

BRKPT Redirect all print to alternate print file.

CONSOLE Redirect all print to the system console.

CLOSE Close (@BRKPT and @FREE) the current print file.

ECHO Redirect the output to both the reply and the alternate file.

EJECT Page advance immediately (redirected output).

LOCAL Direct output to PRINT$ (initial mode).

OPTION Send an optional print control image to the current print file.

When in BRKPT mode, batch mode (@START) or if the B-option was used on the

I-QU PLUS-1 processor call, I-QU PLUS-1 will use the 132-character print width for all

output; in all other cases, the print width will be 76 characters.

Format:

PCONTROL {BRKPT ['[qualifier*]filename' | variable] | ;

 CONSOLE | ;

 CLOSE | ;

 ECHO ['[qualifier*]filename' | variable] | ;

 EJECT | ;

 LOCAL | ;

 OPTION {print-control-image-variable | 'print-control-image-literal '} }

PCONSOLE may be abbreviated PC, with CONS or CONSOL for CONSOLE, EC for ECHO, E for

EJECT, L for LOCAL and OPT for OPTION.

If the CONSOLE option is used, the print line should be limited to 50 characters to prevent

truncation at the system console.

If the optional [qualifier]*filename is used with BRKPT or ECHO, I-QU PLUS-1 will use the

specified file. If the file does not exist, it will be created. Each time a new file is specified,

the previous file will be @BRKPTed (closed) and @FREEed (released).

If no [qualifier]*filename is specified with BRKPT or ECHO, I-QU PLUS-1 will attempt to

create a file with a name in the range I$QUPRT0 through I$QUPRT9 (I-QU PLUS-1’s default

alternate print files). If all ten alternate print files already exist, an error will occur.

Upon exiting I-QU PLUS-1, any I$QUPRTn files created will be @BRKPTed and @SYMed.

User specified files will be @BRKPTed and @FREEed.

The [qualifier]*filename may be given as either an alpha literal or an alpha variable.

The PCONTROL command with the OPTION clause is used to call for special forms, change

margins, or print headings. PCONTROL will output the print control function image

furnished by the user in the print-control-image-variable, or the print-control-image-literal,

to the current print file. Valid print control function formats will be found in the EXEC

Programmers Reference Manual. In LOCAL mode, all OPTION images are ignored.

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-32 KMSYS Worldwide, Inc.

Below, some of the commonly used print control function formats are shown:

Special Forms Request:

S,forms-name-text

Headings:

H,options,page-number-to-start,heading-text

Where options are: N = Do not print heading; X = Suppress printing page number

and date.

Line Skip:

L,line-number

Where line-number is an integer value one less than the desired line number. For

example, to skip to line 15, use “L,14”.

Margins:

M,lines-per-page,at-top,at-bottom,lines-per-inch

More than one print control function may be entered in a single image if separated

by periods. For example, the following image in the print output will call for form 1-

PART 9X11 to be mounted, and will cause each page to be headed with CUSTOMER

LIST.

‘S,1-PART 9X11.H,,1,CUSTOMER LIST’

Examples:

PCONTROL BRKPT . Breakpoint to default file

PCONTROL BRKPT 'MY*PRTF' . Breakpoint to a user file

The following will set 88 lines per page, with four lines at top and bottom margin,

and print eight lines per inch.

PCONTROL OPTION 'M,88,4,4,8'

The following will call for special INVOICE forms to be mounted when the print file is

printed.

PCONTROL OPTION 'S,INVOICE'

The following will cause all report pages to have the title “A/R SUMM” with the

current date and page numbers starting at page 1.

PCONTROL OPTION 'H,,1,A/R SUMM'

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-33 KMSYS Worldwide, Inc.

9.21 ROUND

The ROUND command is used to toggle automatic rounding of arithmetic results on and off.

Automatic rounding is initially ON. Rounding may occur on any command that produces a

numeric result.

Format:

ROUND {ON | OFF}

ROUND may be abbreviated ROU.

Examples:

DEF N INT-NUM 0

DEF N DEC-NUM .000

...

 DEC-NUM = 12.567

 INT-NUM = DEC-NUM

 DISPLAY INT-NUM

 ROUND OFF

 INT-NUM = DEC-NUM

 DISPLAY INT-NUM

The preceding would produce the following:

 13 <––– (Result ROUNDed)

 12 <––– (Result not ROUNDed)

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-34 KMSYS Worldwide, Inc.

9.22 SCAN

This command is used to search for a specified string of characters within a field in the RDA.

If the string is found, its offset from the start of the field being searched is returned, else a -

1 is returned.

Format:

SCAN RDA RDA-reference {'alpha-literal ' | variable} length-result-variable

SCAN may be abbreviated SC.

The length-result-variable is used to specify the length of the string to be compared in the

scan. If it is set to zero, the length of the search literal (‘alpha-literal ’) or variable will be

assumed. The same variable (length-result-variable) will be used to return the result of the

scan. If the string is found, the variable is set to the offset from the first character of the

field at which the find was made. If the string was not found, a -1 is returned.

The length-result-variable may not exceed the length of the search literal or variable.

The search literal (alpha-literal) or variable may not exceed 256 characters.

The length-result-variable should be initialized each time a SCAN is to be executed.

Examples:

Search for all customer names containing the name “JONES”.

...

FETCH3 NEXT CUSTOMER-REC CUSTMST AREA

IF ERROR-NUM = 7

 GO END-AREA

ENDIF

SET X = 0 . Initialize length/result variable.

SCAN RDA CUSTOMER-NAME 'JONES' X . SCAN for string

IF X > -1 . Found?

 DISPLAY RDA CUSTOMER-NAME . Display name

 SET FIND-CNT = FIND-CNT + 1 . Count it

ENDIF

...

The following procedure will perform a table lookup to convert an alpha code to its numeric

value. The following table is stored in the RDA:

1001 1010 1020 1030 1040 1050 1060

 |...|....|....|....|....|....|....|....|....|....|....|....|...

 A 01B 02C 03D 04E 05F 06G 07H 08I 09J 10K 11L 12M 13N 14O 15...

DEFINE A ALPHA-CODE 2

DEFINE N NUM-CODE

 ...

 ALPHA-CODE = RDA REGION-CODE

 DO CONVERT-CODE

 IF NUM-CODE = 0

 DISPLAY 'ERROR-INVALID ALPHA REGION CODE'

 ELSE

 DISPLAY NUM-CODE

 ENDIF

 ...

CONVERT-CODE PROCEDURE

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-35 KMSYS Worldwide, Inc.

 X = 0

 NUM-CODE = 0

 SCAN RDA (1001,104) ALPHA-CODE X . Search for code

 IF X NOT = -1

 SET NUM-CODE = RDA (1003,2) UN9:X . Get value

 ENDIF ...

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-36 KMSYS Worldwide, Inc.

9.23 SET

This form of the SET command will transfer data to the specified data storage area variable

or RDA reference. The SET command can also determine the:

 Current or ending print position of the print buffer ($PBUFF);

 Start position, length and data type of RDA references;

 Length of an item if leading and trailing spaces were suppressed;

 Number of decimal positions on numeric items;

 Switch settings (ON/OFF) of the ROUND, DECIMAL and CASE commands.

Literals specified will first be stored in the data storage area by the command editor. In all

cases of this form of SET, the data type of the object variable or RDA reference must be the

same as the literal, variable or RDA reference from which the value will be obtained.

When the SET command is used to set an RDA reference that has a data type of MAPNUM,

the reference must be set as an alphabetic item (e.g., SET RDA QTY-ON-HAND = ‘0’). If a

numeric variable or numeric RDA reference is set to the contents of an RDA reference with a

data type of MAPNUM, I-QU PLUS-1 will convert the MAPNUM item to an internal format and

then decimal align it (if required) for the receiving field. Any excess fractional digits will be

rounded/truncated.

Format:

[SET] {variable | RDA RDA-reference} = ;

 {variable | ;

 special-name | ;

 RDA RDA-reference | ;

 'alpha-literal ' | ;

 (integer-literal,integer-literal) | ;

 expression | ;

 $VAL value-operation}

The command keyword “SET” is implied and may be omitted. SET may be abbreviated S.

Where expression may have the following format:

{numeric-literal | numeric-variable | RDA RDA-reference} ;

 {+ | – | * | /} ;

 {numeric-literal | numeric-variable | RDA RDA-reference}

Special-name may be one of four possible values: $HIVALS, $LOVALS, $SPACES and

$PBUFF. $HIVALS and $LOVALS correspond to ASCII COBOL HIGH-VALUES and LOW-

VALUES and may be used in setting alpha variable or RDA items. $SPACES may be used to

set an alpha variable or RDA item to all spaces. $PBUFF refers to the current contents of

the print buffer. It may be used to set an alpha variable or RDA item. Using this option will

set the specified variable to the contents of the print buffer, and then space fill the print

buffer as if it had been printed.

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-37 KMSYS Worldwide, Inc.

Where value-operation may have the following format:

{CURRPCOL | ;

 LASTPCOL | ;

 ROUND | ;

 DECIMAL | ;

 CASE | ;

 {STARTPOS {variable | RDA RDA-reference} ;

 TRIMLEN {variable | RDA RDA-reference} | ;

 LENGTH {variable | RDA RDA-reference} | ;

 DECPOS {variable | RDA RDA-reference} | ;

 TYPE {variable | RDA RDA-reference} } }

The $VAL option is used to determine a value based on a specific function. The value

returned will always be numeric; therefore, the receiving RDA-reference or variable (to the

left of the =) must always be numeric. The other RDA-reference or variable (to the right of

the =) may be either numeric or alphabetic within the limits described in the table below.

The functions of the $VAL option are:

Function Purpose

CURRPCOL This function returns the current print position maintained by

I-QU PLUS-1 in the print buffer ($PBUFF). The current print position is

the next available print position for a subsequent DISPLAY, TRIMDISP,

EDIT or TRIMEDIT command unless overridden by a column

specification. This function is only meaningful when preceded by a

DISPLAY, TRIMDISP, EDIT or TRIMEDIT command utilizing the plus

(+) option.

LASTPCOL This function returns the highest print position currently in the print

buffer ($PBUFF). This function is useful to ensure that printed output

will not exceed the physical limitations of the output device. This

function is only meaningful when preceded by a DISPLAY, EDIT,

TRIMDISP or TRIMEDIT command utilizing the plus (+) option.

ROUND This function returns the value of the ROUND switch. A value of zero

is returned if the ROUND switch is off, and a value of 1 is returned if

the ROUND switch is on (see the ROUND command, page 9-37).

DECIMAL This function returns the value of the DECIMAL switch. A value of zero

is returned if the DECIMAL switch is off, and a value of 1 is returned if

the DECIMAL switch is on (see the DECIMAL command, page 9-17).

CASE This function returns the value of the CASE switch. A value of zero is

returned if the CASE switch is off, and a value of 1 is returned if the

CASE switch is on (see the CASE command, page 9-6).

STARTPOS This function returns the start position of the named RDA-reference

within the RDA. If a variable is specified, a start position of zero (0) is

returned.

TRIMLEN This function returns the size of the significant portion of the RDA-

reference or variable. The returned value represents the size as if

displayed by the TRIMDISP command with leading and trailing spaces

deleted. This function is useful when determining the size of a single

data item or an assembled print line for centering or right justification

(see the examples below).

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-38 KMSYS Worldwide, Inc.

Function Purpose

LENGTH
This function returns the actual length of an RDA-reference.If a

variable is specified, a length of zero (0) is returned.

DECPOS This function returns the number of decimal positions defined on a

numeric RDA-reference or numeric variable. If an alphanumeric RDA-

reference or alphanumeric variable is specified, a zero (0) result is

returned.

TYPE This function returns the type code of the RDA-reference or variable.

The following values are defined:

ASCII FIELDATA

Floating-

Point BIS Variables

DISP

A9

SN9

UN9

COMP

SB9

UB9

16

16

19

18

1

1

0

DISP

A6

SN6

UN6

COMP4

SB6

UB6

48

48

51

50

33

33

32

FP1

FP2

5

6

MAPNUM 22 DEF A

DEF FP

DEF N

201

206

200

Examples:

Given the following definitions:

DEFINE N OLD-DBP

DEFINE RDA DBP-RDA (1000,4) UB9

. Database Pointers (DBP) and Database Keys

. (DBK) are always UB9

DEFINE N N1 .000

DEFINE N N2

DEFINE A HOLD-1 6

DEFINE A HOLD-2 6

.

 RDA DBP-RDA = OLD-DBP . Named RDA ref.

 RDA (1000,4) UB9 = OLD-DBP . Direct RDA ref.

.

 X = 0

 N1 = 0

 N1 = X + 1

 N2 = -5

 N1 = N2 + N1 . N1 should now contain -4.000

.

 HOLD-1 = 'ABCDEF'

 HOLD-2 = HOLD-1 . Move 'ABCDEF' to HOLD-2 also

 RDA (1,6) = HOLD-1 . Move HOLD-1 to RDA pos. 1-6

 HOLD-1 = RDA (3,8) . Move RDA pos. 3-8 to HOLD-1

 . Pos. 9-10 will be truncated

 HOLD-2 = $LOVALS . Move binary zeros to HOLD-2

.

 RDA PRODUCT-ID = 1011234

 RDA PRODUCT-DESC = 'ABCD'

 RDA (5,4) COMP = -505

 RDA PRODUCT-ID = RDA LINE-PRD

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-39 KMSYS Worldwide, Inc.

 RDA (1,100) = $LOVALS . Clear 100 chrs of RDA

The following form of the SET packs two integer numbers into a numeric variable.

G-AKEY = (1,5) . Set PAGE-NUM to 1

 . and RECORD-NUM to 5

The actual decimal value of G-AKEY after the above SET would be 262149 (octal

0000001000005).

The following illustrates use of the $PBUFF special value. First, values are formatted

into the print buffer using EDIT, DISPLAY, TRIMEDIT and TRIMDISP commands. The

‘+’ is necessary to prevent I-QU PLUS-1 from printing the string.

DISPLAY 'The total is ' +

TRIMEDIT N1 '-ZZ,ZZZ.99' +

 . + prevents $PBUFF from being cleared

HOLD-THING = $PBUFF

HOLD-THING will then contain “The total is -4.00” and the print buffer will be

cleared.

Since an RDA item that is defined as having a data type of MAPNUM cannot be set as

a numeric item, $PBUFF can be used as a staging area for numeric data. For

example:

DEF RDA NEW-RATE (*,10) MAPNUM .00

DEF N RATE-INCREASE .00

. . .

 RATE-INCREASE = RDA NEW-RATE

 . Numeric variable set to MAPNUM

 RATE-INCREASE = RATE-INCREASE * 1.10 . Add 10%

 TRIMEDIT RATE-INCREASE 'ZZZ,ZZZ.99' +

 RDA NEW-RATE = $PBUFF

To avoid exceeding the length of an output device (e.g., 100 characters) the

following $VAL LASTCOL and TRIMLEN function may be used. This example creates

a record containing trimmed amounts delimited by a single space (123.56 98.76):

DEF F AMOUNTS-OUT SEQ 100,10

DEF RDA OUT (1,100)

DEF RDA AMOUNT (101,10) .00

. . .

 X = 0

 DO WHILE X < 500 . Table contains 50 AMOUNTs

 DO UNTIL Y > 100 . Next TD would be > 100

 TD RDA AMOUNT :X +

 DISPLAY ' ' +

 Y = $VAL LASTCOL . Get last pos. of $PBUFF

 X = X + 10 . Bump by 10 for next AMOUNT

 Z = $VAL

 TRIMLEN RDA AMOUNT :X

 . Get trim length of it

 Y = Y + Z

 ENDDO

 RDA OUT = $PBUFF . Clears $PBUFF

 WRITE AMOUNT-OUT

ENDDO

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-40 KMSYS Worldwide, Inc.

The following example will center a staged header using variable substitution:

DEF A HEADER 132

. . .

 DISPLAY 'The following information is for ' +

 TRIMDISP RDA C01-CUSTOMER-NAME +

 DISPLAY ', ' +

 TRIMDISP RDA C01-CITY +

 DISPLAY ', ' +

 TRIMDISP RDA C01-STATE +

 X = $VAL LASTPCOL . Get last pos. in $PBUFF

 X = 132 - X

 X = X / 2 . Get start pos. of center

 HEADER = $PBUFF

 TRIMDISP @X HEADER . HEADER begins at (@) X

. . .

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-41 KMSYS Worldwide, Inc.

9.24 SHIFT

The SHIFT command shifts lower-case characters to uppercase characters, or vice versa.

FIELDATA RDA data items will not be affected by the SHIFT command. The shift only

changes characters “A” though “Z” (to LOWER), and “a” through “z” (to UPPER).

Format:

SHIFT {variable | RDA RDA-reference} TO {UPPER | LOWER}

SHIFT may be abbreviated SHI.

Example:

DEF A ANSWER 1

.

. *** Accept until a valid answer is received ***

 DO WHILE ANSWER <> 'Y'

 AND ANSWER <> 'Y'

 ACCEPT ANSWER "Want to continue (Y or N)?" CONSOLE

 SHIFT ANSWER TO UPPER

 ENDDO

 ...

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-42 KMSYS Worldwide, Inc.

9.25 STOP

All I-QU PLUS-1 programs must be terminated by the STOP command. A STOP command is

automatically generated following the last command executed as a result of the RUN

directive.

Format:

STOP {exit-code-literal | exit-code-variable | EXIT}

If the EXIT option is not used, the I-QU PLUS-1 program will not terminate. Instead,

I-QU PLUS-1 will revert to the mode that was in effect at the time the RUN directive was

issued. If the exit-code-literal or exit-code-variable is used, I-QU PLUS-1 will display the

code as the STOP is executed. If EXIT is used, the I-QU PLUS-1 session will be terminated.

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-43 KMSYS Worldwide, Inc.

9.26 SWGET

The SWGET command provides a means of setting a numeric variable’s value to the state of

a switch in the run unit’s condition word. The state can be either zero (for OFF), or one (for

ON). The condition word switches are numbered to correspond with ASCII COBOL (See the

ASCII COBOL Programmer Reference Section on Switch-Status Condition). The state of

condition word switches 1 through 24 may be obtained. Condition word switches may be

set externally within the run via another program or @SETC or at run initiation time via the

condition word parameter on the @START command or the console ST key-in.

Format:

SWGET switch-number variable

SWGET may be abbreviated SWG.

The switch-number must be an integer in the range 1 through 24. The variable must

specify a decimal integer numeric variable.

Example:

SWGET 5 COND

IF COND = 1

 DO MONTHLY-PROCESS

ELSE

 DO DAILY-PROCESS

ENDIF

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-44 KMSYS Worldwide, Inc.

9.27 SWSET

The SWSET command allows the setting of a switch in the run’s condition word. Only

switches 13 through 24 may be altered. The new value may be used internally in

I-QU PLUS-1 via the SWGET command or externally via ECL @TEST and @JUMP commands.

Format:

SWSET switch-number {ON | OFF}

SWSET may be abbreviated SWS.

The switch-number must be an integer in the range 13 through 24.

Example:

PCONTROL CONSOLE

IF TRANSACTION-COUNT = 0

 DISPLAY 'No transactions, transaction';

 ' last step will be skipped.'

 SWSET 13 ON

ELSE

 DISPLAY 'Transactions total = ' +

 TRIMDISP TRANSACTION-COUNT

 SWSET 13 OFF

ENDIF

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-45 KMSYS Worldwide, Inc.

9.28 TABS

The TABS command is used to turn automatic tab insertion on and off. If on, a tab

character will be inserted in the first output position of every DISPLAY, EDIT, TRIMDISP or

TRIMEDIT followed by the data. The initial setting of TABS is off.

Format:

TABS {ON | OFF}

TABS may be abbreviated TA.

Example:

IF ERROR-NUM NOT = 13

 TABS ON

 . Output TABS in front of each field

 DISPLAY RDA KEY +

 DISPLAY RDA DESC +

 DISPLAY 27 RDA STATUS +

...

 TABS OFF

ELSE

 DISPLAY '. NO FIND ON ' + . No TABS

 DISPLAY KEY

ENDIF

The tab line produced in the above example would look like this:

columns 1...5....10...15...20...25...

 ^2009^DOUBLE WIDGET ^S

The caret symbol (^) is used in the above example to represent the transparent tab

character.

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-46 KMSYS Worldwide, Inc.

9.29 TIME

The TIME command is used to set the current time of day into the reserved variables TIME-

MSPM and TIME. The variable TIME-MSPM will be set to the current time of day in

milliseconds past midnight (MSPM). TIME will be set to an edited display consisting of

hours, minutes, seconds and thousandths of seconds (example: 13:23:45:028). If the user

furnishes the time in milliseconds as a numeric input variable, this command will convert

the variable to the edited time format and place the result in the variable TIME. This

command may be used to time various I-QU PLUS-1 program operations, or to limit run

execution.

Format:

TIME [time-variable | time-literal]

TIME may be abbreviated TI.

Example:

DEFINE N ST-TIME . Variable to save start time.

DEFINE N ELAPSED-TIME . Variable to calc elapsed time.

...

TIME . Set time -beginning of run.

ST-TIME = TIME-MSPM . Save for calculation later.

...

...

TIME . Set current time -end of run.

ELAPSED-TIME = TIME-MSPM -ST-TIME

 . Calc elapsed time

IF ELAPSED-TIME > 60000 . Is time > 60 seconds?

 TIME ELAPSED-TIME . Convert to edited form DISPLAY TIME

ENDIF

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-47 KMSYS Worldwide, Inc.

9.30 TRACE

The TRACE command is used to turn the I-QU PLUS-1 TRACE routines on or off. When

TRACE is turned on, I-QU PLUS-1 will display the program counter (PC) value for each

command executed. This command is often used in debugging I-QU PLUS-1 program logic.

Format:

TRACE {ON | OFF}

TRACE may be abbreviated TRA.

Example:

INVOKE ACCTSUB IN ACCT FILE ACCT*SCHEMA

DEF N TOT-ACCUM

...

 TRACE ON . Will list the program counter of each

 . I-QU PLUS-1 command executed.

 F4 F ACCTREC ACCTAREA A

 DO WHILE ERROR-NUM = 0

 ...

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-48 KMSYS Worldwide, Inc.

9.31 TRANSFER

The TRANSFER command is used to perform record level movement of data within the RDA.

All record TRANSFERs are specified by actual word addresses, defined file names, invoked

DMS 2200 record names or defined BIS DTM queue-alias names. The TRANSFER command

is much more efficient than the SET command when moving records within the RDA.

Format:

TRANSFER {filename | record-name | queue-alias | SORT | from-word} TO ;

 {filename | record-name | queue-alias | ;

 SORT [number-of-words] | to-word [number-of-words] }

TRANSFER may be abbreviated TRANS.

Restrictions:

Specifying the same name or word address in both the “from” and “to” fields is

illegal.

Specific word addresses cannot be used in both the “from” and “to” fields unless the

number-of-words is specified.

Number-of-words only applies when both from-word and to-word addresses are

specific word addresses, or when SORT is specified in conjunction with a from-word

or to-word address.

The number-of-words to move when filename, record-name and/or queue-alias

names are used will be determined by the length of the shortest or only defined

area; number-of-words does not apply in this case.

Examples:

DEFINE RA R0009-MST 100 . Alternate record area.

DEFINE RA SORT 200

...

 IF RDA 0009-KEY OF R0009-MST = 'AB0001'

 TRANSFER R0009-MST TO SORT

 . Move to SORT

 RELEASE R0009-MST . Release len. of R0009-MST

 ENDIF

...

 RETURN AT END END-OF-JOB

 TRANSFER SORT TO 1,50 . To words 1-50 of the RDA

 WRITE COBFIL

...

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-49 KMSYS Worldwide, Inc.

9.32 TRIMDISP

The TRIMDISP command performs the same functions as the DISPLAY for variables and RDA

items, except that any leading and trailing spaces are not moved to the print buffer (except

for alpha literals). Also, the next available output position will only be advanced by the

number of significant characters actually moved to the print buffer. This command allows

strings to be concatenated with no intervening spaces.

Format:

TRIMDISP [column-literal | @numeric-variable] {RDA RDA-reference | ;

 {variable-1 | 'alpha-literal-1'} … {variable-4 | 'alpha-literal-4'] } [+]

TRIMDISP may be abbreviated TD or TRIMD.

A TRIMDISP with no other options will generate a blank line.

Only one RDA-reference may be used within a single TRIMDISP. However, from one to four

alpha string literals (alpha-literal-n) and variables (variable-n), or a combination of each,

may be displayed using a single TRIMDISP command.

Trailing and leading spaces will not be suppressed on alpha string literals.

Output may be temporarily suppressed by using the “+” symbol, as with the DISPLAY

command. Column number specifications and automatic TAB character insertions also

function as with the DISPLAY command.

Examples:

TRIMDISP MONTH '/' DAY '/' +

TRIMDISP YEAR

The above would display a date in the following manner:

3/5/1994

Right justify variable output on a 132-character print line:

DEF A SUBTOTALHOLD 132

DEF N SUBTOTAL

 DISPLAY 'Subtotal is ' +

 TRIMEDIT SUBTOTAL '$ZZ,ZZZ,ZZZ.99' +

 X = $VAL LASTPCOL . Get the length of display

 X = 132 - X . Compute starting column

 SUBTOTHOLD = $PBUFF . Set hold variable

 TRIMDISP @X SUBTOTHOLD . Print at (@) column X

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-50 KMSYS Worldwide, Inc.

9.33 TRIMEDIT

The TRIMEDIT command performs the same functions as the EDIT for variables and RDA

items, except that any leading and trailing spaces are not moved to the print buffer. Also,

the next available output position will only be advanced by the number of significant

characters actually output to the print buffer. This command allows strings to be

concatenated into the print buffer with no intervening spaces.

Format:

TRIMEDIT [column-literal | @numeric-variable] ;

 {numeric-variable | RDA RDA-reference} ;

 [*] {'edit-mask-literal ' | edit-mask-variable} [+]

TRIMEDIT may be abbreviated TE, TED or TRIME.

Output may be temporarily suppressed by using the “+” symbol, as with the DISPLAY

command. Column number specifications and automatic TAB character insertions also

function as with the DISPLAY command.

Example:

DEFINE N AVERAGE .000

DEFINE N COUNT 0

DEFINE A NAME 14

 ...

 TRIMDISP '*** ' NAME ' had ' +

 TRIMEDIT COUNT 'ZZZ,ZZ9' +

 DISPLAY ' sales, which averaged ' +

 TRIMEDIT AVERAGE '-ZZZ,ZZZ.999' +

 DISPLAY ' each.'

If NAME contains “SAM”, COUNT contains 21 and AVERAGE contains 14.230, the preceding

sequence of commands would produce the following line:

*** SAM had 21 sales, which averaged 14.230 each.

If the TRIMEDIT and TRIMDISP commands were replaced by EDIT and DISPLAY commands,

respectively, the line would look like this:

*** SAM had 21 sales, which averaged 14.230 each.

I-QU PLUS-1 Programmer Reference General Procedural Commands

9-51 KMSYS Worldwide, Inc.

9.34 WAIT

The WAIT command is used to cause a voluntary delay in program execution. The delay is

specified as an integer number of seconds.

Format:

WAIT {numeric-literal | variable | RDA RDA-reference}

Example:

ASG-FILE

CSF Z '@ASG,A MASTER.'

IF Z < 0 . Can't get file

 X = X + 1

 IF X < 10 . Less than 10 tries

 WAIT 5 . Wait 5 more seconds

 GO ASG-FILE . Go try again

 ELSE

 DISPLAY "CAN'T ASSIGN MASTER"

 STOP EXIT

 ENDIF

ENDIF

General Procedural Commands I-QU PLUS-1 Programmer Reference

9-52 KMSYS Worldwide, Inc.

9.35 WILDCARD

The WILDCARD command is used to set a wild card character to be used in alpha string

compare operations of the IF and SCAN commands. The WILDCARD command may also be

used to inhibit the use of any wild card characters in comparisons (the default).

Format:

WILDCARD IS {'alpha-literal ' | variable | RDA RDA-reference | NONE}

WILDCARD may be abbreviated WI.

If a variable or RDA-reference is used, it must define an alphabetic item. If the supplied

item is greater than one character in length, the leftmost character will be used. The wild

card character will stay in effect until it is changed either to another character, or

deactivated by specifying the keyword NONE in the command.

Examples:

WILDCARD IS '%' . Designate wild card char.

...

IF RDA PART-NUM = 'A%%%1%%%'

 DO SELECT

ENDIF

WILDCARD IS NONE . Clear wild card char.

Any time the PART-NUM contains an “’A” in the first position and a “1” in the fifth position,

the test will be true regardless of the contents of the rest of the field.

I-QU PLUS-1 Programmer Reference SORT Interface

10-1 KMSYS Worldwide, Inc.

Chapter 10: PCIOS and SFS 2200 File Interface

The number of Processor Common Input/Output System (PCIOS) and Shared File System

(SFS) 2200 files that can be processed during one session is dependent upon how many

files were configured when I-QU PLUS-1 was installed. The default is 10. Each file must be

defined using the DEFINE F directive before being referenced by the PCIOS/SFS file handling

commands. All file formats are supported.

For all PCIOS/SFS file input/output commands, data will be read into, and written from, the

RDA beginning at position one, or at the beginning of the area specified by a DEFINE RA

directive for the file.

Special PCIOS status codes returned from I-QU PLUS-1 can be found at the end of this

chapter.

PCIOS error codes returned by the Processor Interface Module (PIM) can be found in the

Unisys publication, PCIOS Administration and Programming Reference Manual (7831 0588).

SFS 2200 error codes returned by the Logical Data Manager (LDM) can be found in the

Unisys publication, UDS SFS 2200 Administration and Support Reference Manual (7831

0786).

PCIOS and SFS 2200 File Interface I-QU PLUS-1 Programmer Reference

10-2 KMSYS Worldwide, Inc.

10.1 PCIOS/SFS File Usage and Access Modes

The following table shows the allowed access and usage modes for each of the file types:

File Type
Usage Modes

Access Modes
INPUT OUTPUT UPDATE EXTEND

SEQ* (Sequential) YES YES YES* YES SEQ

DIRECT (Also called

Relative or DSDF)
YES YES YES YES DIRECT

INDEXED**

(Also called MSAM)
YES YES YES NO

SEQ, RANDOM,

DYNAMIC

ISAM YES YES YES NO
SEQ, RANDOM,

DYNAMIC

TAPE YES YES NO YES SEQ

Table 10-1: File Usage/Access Modes

* SEQ files may be either disk or tape; however, tape files cannot be opened with a

usage mode of UPDATE.

** INDEXED files may have a primary key, or a primary key with up to 19 alternate or

secondary keys.

The file’s type is specified in the DEFINE F directive, while the USAGE and ACCESS modes

are specified on the file OPEN command.

I-QU PLUS-1 Programmer Reference SORT Interface

10-3 KMSYS Worldwide, Inc.

10.2 PCIOS/SFS File Definition (DEFINE F)

Before a PCIOS/SFS file may be referenced, it must be defined. I-QU PLUS-1 supports

standard file formats. Files may be opened, referenced and closed as necessary. All file

input and output is done through the RDA.

If multiple records are to be read and compared, the user may set up alternate record areas

using the DEFINE RA directive, or move necessary data items to a defined variable storage

location.

There are several formats used for file definition depending on the file type. The following

file types may be defined:

SEQ PCIOS sequential SDF files.

DIRECT PCIOS direct (or relative) files (DSDF).

INDEXED PCIOS indexed-sequential files (MSAM)

TAPE PCIOS ANSI tape files.

ISAM COBOL indexed files assigned to “MASS-STORAGE”

Format-1 SEQ:

DEFINE F[F] filename SEQ record-length,block-size [RECORDS | CHARACTERS]

Format-2 DIRECT:

DEFINE F[F] filename DIRECT [SHARED record-length ;

 maximum-records-in-file,relative-key-variable

Format-3 INDEXED:

DEFINE F[F] filename INDEXED [SHARED] ;

 record-length,block-size [RECORDS | CHARACTERS] record-key ;

 [secondary-key-1 [DUPS]] [secondary-key-19 [DUPS]]

Format-4 TAPE:

DEFINE F[F] filename TAPE record-length,block-size [RECORDS | CHARACTERS] ;

 [ANSI-format [UNIVAC | IBM]]

Format-5 ISAM:

DEFINE F[F] filename ISAM [RECORDS | CHARACTERS] actual-key-variable

DEFINE may be abbreviated DEF; RECS or RECORD for RECORDS; and CHARS for

CHARACTERS.

If DEFINE F is used, the record-length is based on ASCII characters. If DEFINE FF is used,

the record-length is in FIELDATA characters.

SEQ files may be externally assigned to either tape or disk. If assigned to tape, they will be

in SDF format.

DIRECT, INDEXED (MSAM) and ISAM files must be assigned to disk.

TAPE files must be assigned to tape.

For DIRECT and INDEXED files, the optional SHARE parameter allows these file types to be

accessed by SFS 2200 under the control of the Universal Data System (UDS). SFS 2200

files are “shared” files that provide a site the same recovery, locking and queuing features

used for other file systems under UDS Control. SFS 2200 files must have File Description

Tables (FDTs) created by the UDS Unisys Repository Manager (UREP). See “Defining and

Maintaining Storage Areas” in the Repository for ClearPath OS 2200 Administration Guide

(7830 8087), or contact the appropriate data processing support personnel at your site for

assistance. To access SFS 2200 files, the I-QU PLUS-1 program must first perform an

PCIOS and SFS 2200 File Interface I-QU PLUS-1 Programmer Reference

10-4 KMSYS Worldwide, Inc.

explicit (single) BEGIN THREAD prior to the file OPEN. Use the RDMS command to perform

the BEGIN THREAD (see Section 14.1, “RDMS Command”). Also, use the RDMS command

to perform the END THREAD at the end of the program.

The record-length parameter specifies the number of characters per record. The block-size

can be specified as the number of records or characters per block. If the optional

RECORDS/CHARACTERS keyword is not specified, I-QU PLUS-1 will default to records per

block. If block-size is zero (0), I-QU PLUS-1 will determine the block size by reading the

physical record header. The zero specification is only valid for files that are opened as

INPUT, UPDATE or EXTEND.

The relative-key-variable and maximum-records-in-file parameters apply only to DIRECT

files. The variable named must be numeric. The maximum-records-in-file parameter is a

numeric integer literal. It is used to initialize all records in a DIRECT file when it is opened

for OUTPUT or EXTEND. It is ignored when the file is opened as INPUT or UPDATE.

For INDEXED files, the record-key and secondary-key-n are given as RDA references, either

direct or by data item name. When defining an INDEXED file to be opened for INPUT,

UPDATE or EXTEND, all keys must be specified in the same order and for the same positions

as when the file was originally created. The DUPS clause indicates a secondary key that has

duplicates allowed. A maximum of 19 secondary keys may be specified.

For files defined as tape, the following ANSI-formats are supported in I-QU PLUS-1:

ANSII Format Meaning

U Undefined

F Fixed

V Variable

FB Fixed Blocked

VB Variable Blocked (Default)

If UNIVAC is specified for an ANSI TAPE file, the record length will be internally adjusted to

the next multiple of four (4) characters for even word counts. If IBM is specified, the

character length will be as specified. The default is UNIVAC.

The actual-key-variable applies only to ISAM files (older version single-key indexed

sequential) and must be defined as alphanumeric. The length of the actual-key-variable

cannot exceed 1024 characters.

Most programming shops use MSAM as opposed to the old ISAM format. The

programming techniques required to handle ISAM are the same as that required for

MSAM; however, multiple key access is not supported for ISAM. If there is a question as

to whether a file created in a COBOL program is MSAM or ISAM, look for the ASSIGN

clause on the SELECT statement in the COBOL ENVIRONMENT DIVISION. If it is

assigned to DISC, it is MSAM; if assigned to MASS-STORAGE, it is ISAM. The ISAM key

cannot be specified as an RDA reference in the record. A user-defined variable must be

specified.

I-QU PLUS-1 Programmer Reference SORT Interface

10-5 KMSYS Worldwide, Inc.

Examples:

1. DEFINE F SAVE-FILE SEQ 100 50

2. DEFINE F DIR-FILE DIRECT 80 2500 REL-KEY

3. DEFINE F MSAM-FILE INDEXED 122 24 (1,4) (9,8) DUPS

4. DEFINE F ISAM-FILE INDEXED 50 20 PROD-NUM

5. DEFINE F OUTFIL TAPE 334 3584 CHARACTERS

6. DEFINE F IBMTAPE TAPE 90 22 FB IBM

7. DEFINE F DIR-SFS DIRECT SHARED 875 5000 REC-NO

8. DEFINE F MSAM-SFS INDEXED SHARED 122,0 (1,4) KEY2 DUPS

Explanation:

The file in Example 1 is a PCIOS sequential file with 100-character records, blocked 50

records.

Example 2 defines a PCIOS DIRECT (or relative) file. Records contain 80 characters. The

file will be initialized to 2500 records if opened for OUTPUT. The variable, REL-KEY, must be

set to the relative record number for read, write and delete operations.

Example 3 is an INDEXED file with a primary and one secondary key. The primary key is 4

characters starting in position 1, and the secondary key is 8 characters starting in position

9. Each record contains 122 characters, blocked 14.

Example 4 is an INDEXED file with only a primary key. The key is specified by its name,

requiring a data item index file. The records are 50 characters, blocked 20.

Example 5 defines a PCIOS ANSI tape file with 334 character records, blocked 3,584

characters.

Example 6 is an ANSI tape file in IBM fixed blocked format.

Example 7 defines a shared relative I/O file under SFS 2200. The file will contain a

maximum of 5000 records, which are each 875 characters in length. The relative key

variable used to access the records is called REC-NO.

Example 8 sets up an MSAM shared file under SFS 2200. Each record contains 122

characters. The zero block size indicates that the file’s blocking factor will be determined

from the file header when the file is OPENed for INPUT or UPDATE. The primary key begins

in the first position of the record and extends for four characters. The secondary key is

named KEY2, and duplicates are allowed.

PCIOS and SFS 2200 File Interface I-QU PLUS-1 Programmer Reference

10-6 KMSYS Worldwide, Inc.

10.3 CDELETE

The CDELETE command may be used on any file type. It is used to delete the record just

read. The file must be opened for update.

Format:

CDELETE filename [INVALID KEY program-label | STATUS status-variable]

CDELETE may be abbreviated CD.

The INVALID KEY clause only applies to DIRECT, INDEXED (MSAM) and ISAM files. The

STATUS clause may be used in lieu of the INVALID KEY clause to receive the PCIOS/SFS

error status from the PCIOS Processor Interface Module (PIM) or from SFS 2200. The

status-variable must be defined as a numeric variable. The INVALID KEY and STATUS

clauses are optional in conversational mode.

Example:

SET REL-KEY = 22 . Set RELATIVE key

READ REL-FILE INVALID KEY NO-FIND . Read DIRECT rec.

CDELETE REL-FILE INVALID KEY ERROR . Delete record.

I-QU PLUS-1 Programmer Reference SORT Interface

10-7 KMSYS Worldwide, Inc.

10.4 CLOSE

The CLOSE command is used to close a PCIOS/SFS file. If the file is opened for OUTPUT,

end of file processing will take place. Disk files will not automatically be @FREEed; tape

files will automatically rewind unless the NO REWIND option is used. Files may be closed or

re-opened with different usage and access modes.

Format:

CLOSE filename [[WITH] NO REWIND]

CLOSE may be abbreviated CL.

PCIOS and SFS 2200 File Interface I-QU PLUS-1 Programmer Reference

10-8 KMSYS Worldwide, Inc.

10.5 OPEN

The OPEN command is used to ready a file for use in a program. It establishes the usage

and access modes for the file. The file must be assigned to the run before the OPEN is

executed.

Format:

OPEN filename {INPUT | OUTPUT | UPDATE | EXTEND} ;

 {SEQ | DIRECT | RANDOM | DYNAMIC} [[WITH] NO REWIND] ;

 [number-of-buffers-literal [BUFFERS]]

OPEN may be abbreviated O, with I for INPUT, O for OUTPUT and U for UPDATE.

INPUT, OUTPUT, UPDATE and EXTEND are usage modes and have the following meanings:

INPUT The file will only be read.

OUTPUT The file will only be written. Any existing data will be destroyed.

UPDATE The file may be read and written.

EXTEND The file will only be written to. All data will be written after the last data

block found when the file is opened.

All file types, except TAPE, may be opened for INPUT, OUTPUT or UPDATE. TAPE files may

not be opened for UPDATE. SEQ, TAPE and DIRECT files may be opened for EXTEND.

SEQ, DIRECT, RANDOM and DYNAMIC access modes have the following meanings:

SEQ The file will only be accessed sequentially.

DIRECT The file will only be accessed directly by relative record position. File

type must be DIRECT.

RANDOM The file will only be accessed randomly by primary or secondary record

key. File type must be INDEXED or ISAM.

DYNAMIC The file may be accessed both sequentially and randomly. File type

must be INDEXED or ISAM.

SEQ files may only be accessed sequentially. Files defined as DIRECT may only be opened

for DIRECT access. If a DIRECT file is to be accessed sequentially, it may be defined as a

SEQ file with a block factor of one. INDEXED files may be accessed either SEQ, RANDOM or

DYNAMIC.

The WITH NO REWIND clause can be used with files DEFINEd as TAPE or SEQuential files

assigned to tape for the purpose of stacking files (i.e., multiple file volumes).

The number-of-buffers-literal can only be used for PCIOS INDEXED (MSAM) files. It

provides a means of increasing the number of I/O buffers used by I-QU PLUS-1. If the

number of buffers is not specified, I-QU PLUS-1 will calculate the number of buffers based

on the following formula:

Number of buffers = 4 + the total number of keys

MSAM performance may be improved by allocating additional buffers at the expense of

additional memory requirements. If buffer allocation exceeds memory available for

allocation, a runtime error occurs. This runtime error may occur while executing an

I-QU PLUS-1 program with many open files, large file blocks, or an excessive number of

buffers allocated. If this error occurs, buffer allocation should be reduced, or unused files

closed. If less than five buffers are specified, I-QU PLUS-1 will allocate five buffers; if more

than 24 buffers are specified, I-QU PLUS-1 will allocate 24 buffers.

I-QU PLUS-1 Programmer Reference SORT Interface

10-9 KMSYS Worldwide, Inc.

Examples:

1. Open to read a file sequentially:

OPEN TX-FILE INPUT SEQ

2. Open to create a new file sequentially:

OPEN NEW-MAST OUTPUT SEQ

3. Open to create a new MSAM file in random key order:

OPEN BOND-MAST OUTPUT RANDOM

4. Open to read an MSAM file randomly or sequentially:

OPEN DEPARTMENT INPUT DYNAMIC

5. Open MSAM file to update existing records accessed by key:

OPEN EMP-MAST UPDATE RANDOM

6. Open to create new file by relative record number:

OPEN TAG-FILE OUTPUT DIRECT

7. Open to append records to a file:

OPEN LOG-DUMP EXTEND SEQ

PCIOS and SFS 2200 File Interface I-QU PLUS-1 Programmer Reference

10-10 KMSYS Worldwide, Inc.

10.6 READ

The READ command is used to read a standard file. The file must have been previously

opened. The AT END label must be specified when not in conversational mode.

Format:

READ filename [AT END {program-label | BREAK} | ;

 INVALID KEY program-label | ;

 STATUS status-variable] ;

 [USING KEY key-number-literal]

The AT END clause only applies to sequential reads. The INVALID KEY clause only applies to

DIRECT, INDEXED and ISAM files. The STATUS clause may be used in lieu of the AT END or

INVALID KEY clauses to receive the PCIOS/SFS error status from the PCIOS Processor

Interface Module (PIM) or from SFS 2200. The status-variable must be defined as a

numeric variable. The AT END, INVALID KEY and STATUS clauses are optional in

conversational mode.

BREAK may only be used instead of a label when the READ is contained within a defined

procedure or an in-line DO block.

The USING KEY clause applies to MSAM files when accessing by an alternate record key.

The key-number-literal specifies which alternate key to use from the file’s definition

(example: 1 = the first secondary key defined after the primary key; 2 = the second, etc.).

Following the READ of a SEQ file, the reserved numeric variable REC$LEN will contain the

actual length of the record read in words. This variable may be useful in processing variable

length data records.

If the file is TAPE, REC$LEN will contain the record length in characters.

Examples:

SEQuential File:

READ SEQ-IN-FILE AT END END-OF-RUN

DIRECT File:

SET DIR-KEY = 20 . Relative key = 20.

READ DIR-FILE INVALID KEY NOFIND . Read DIRECT

GO FOUND

INDEXED File (MSAM) - Primary key:

SET RDA PART-NUMBER = '12-994 AB' . Set Key in RDA

READ PARTMSTR INVALID KEY NO-FIND . Read Record

INDEXED File (MSAM) - Secondary key:

File defined (with primary key plus two secondary keys) as follows:

DEFINE F XMAST INDEXED 120,1 (1,5) (6,8) DUPS (14,3) DUPS

...

 RDA (14,3) = SEARCH-VALUE

 READ XMAST INVALID KEY ERROR-1 ;

 USING KEY 2 . Key (14,3)

I-QU PLUS-1 Programmer Reference SORT Interface

10-11 KMSYS Worldwide, Inc.

10.7 READNEXT

The READNEXT command applies only to INDEXED (MSAM) or ISAM files opened as INPUT

or UPDATE with an access mode of SEQUENTIAL or DYNAMIC. READNEXT is used to read

the next logical record in the file. This command must follow a READ, START or a

READNEXT.

Format:

READNEXT filename [AT END {program-label | BREAK} | STATUS status-variable]

READNEXT may be abbreviated READN.

The STATUS clause may be used in lieu of the AT END clauses to receive the PCIOS/SFS

error status from the PCIOS Processor Interface Module (PIM) or SFS 2200. The status-

variable must be defined as a numeric variable. The AT END and STATUS clauses are

optional in conversational mode.

BREAK may only be used when the READNEXT is contained within a defined procedure or an

in-line DO block.

See the START command for usage examples.

PCIOS and SFS 2200 File Interface I-QU PLUS-1 Programmer Reference

10-12 KMSYS Worldwide, Inc.

10.8 REWRITE

The REWRITE command may be used with any file type. The command is used to write the

last record read, back to the same file location from which it was read. The file must be

opened for update, and the number of words written must be the same as the original

record length.

Format:

REWRITE filename [length-literal | length-variable] ;

 [INVALID KEY program-label | STATUS status-variable]

REWRITE may be abbreviated REW.

The length-literal or length-variable entry is optional. If omitted, the defined record length

for the file will be written.

The INVALID KEY clause only applies to DIRECT, INDEXED (MSAM) and ISAM files. The

STATUS clause may be used in lieu of the INVALID KEY clause to receive the PCIOS/SFS

error status from the PCIOS Processor Interface Module (PIM) or from SFS 2200. The

length-variable and status-variable must be defined as numeric variables. The INVALID KEY

and STATUS clauses are optional in conversational mode.

Example:

READ WORK-FILE AT END END-RUN

RDA (1,5) = 'ABCDE' . Change the record.

REWRITE WORK-FILE . Rewrite it.

I-QU PLUS-1 Programmer Reference SORT Interface

10-13 KMSYS Worldwide, Inc.

10.9 START

The START command applies only to INDEXED (MSAM) and ISAM files opened for INPUT or

UPDATE with an access mode of DYNAMIC. START is used to position to a point in the file.

The user may position to a specific key or a point just following a specified key. The START

command does not read a record into the RDA. To read the record into the RDA, use the

READNEXT command.

Format:

START filename [INVALID KEY {program-label | BREAK} | ;

 STATUS status-variable] ;

 [USING KEY key-number-literal] [EQ | GT | EQGT]

START may be abbreviated ST.

The INVALID KEY clause only applies to INDEXED (MSAM) and ISAM files. BREAK may only

be used instead of a label when the START is contained within a defined procedure or an in-

line DO block. The STATUS clause may be used in lieu of the INVALID KEY clause to receive

the PCIOS/SFS error status from the PCIOS Processor Interface Module (PIM) or from SFS

2200. The status-variable must be defined as a numeric variable. The INVALID KEY and

STATUS clauses are optional in conversational mode.

BREAK may only be used instead of a label when the START is contained within a defined

procedure or an in-line DO block.

The USING KEY clause is used to specify positioning on a secondary key, and therefore, only

applies to INDEXED (MSAM) files. The key-number-literal corresponds to the position of the

secondary key in the DEFINE for the file.

EQ, GT or EQGT are used to determine where to position in the file in relation to the key

supplied in the RDA. If not present, EQ is assumed. EQ indicates that a record with a

matching key must be found; otherwise, an invalid key condition will result. GT indicates

that positioning to the next key following the given record key is to be used. If no higher

key exists, an invalid key condition results. EQGT indicates to position to an equal key or to

the next greater key in the file. If no equal condition or higher key exists, an invalid key

error results.

Example:

The following directive defines an MSAM file with one secondary key:

DEFINE F MSTR-FILE INDEXED 100 1 MSTR-NUM MSTR-SCNDRY-KEY

...

 . *** Position based on a secondary key.

 . *** Position to record greater than the letter 'A'.

 RDA MSTR-SCNDRY-KEY = 'A'

 START MSTR-FILE INVALID KEY ERR2 USING KEY 1 GT

 . *** Read the record.

 READNEXT MSTR-FILE AT END END-RUN

...

 . Position based on primary key.

 RDA MSTR-NUM = 100000

 START MSTR-FILE INVALID KEY ERR1 EQ

 READNEXT MSTR-FILE AT END CLOSE-OUT . Read the record.

PCIOS and SFS 2200 File Interface I-QU PLUS-1 Programmer Reference

10-14 KMSYS Worldwide, Inc.

10.10 WRITE

The WRITE command is used to write a specified number of words or characters (depending

on file type) from the RDA to a file. The file may be any standard format.

For standard PCIOS files, the length of the record is specified in characters. If the number

of characters to write is omitted, I-QU PLUS-1 will assume the maximum record length

specified in the file definition.

Format:

WRITE filename [length-literal | length-variable] ;

 [INVALID KEY program-label | STATUS status-variable]

WRITE may be abbreviated W.

The length-literal or length-variable entry is optional. If omitted, the defined record length

for the file (as specified on the DEFINE F directive) will be written.

The INVALID KEY clause only applies to DIRECT, INDEXED (MSAM) and ISAM files. The

STATUS clause may be used in lieu of the INVALID KEY clause to receive the PCIOS/SFS

error status from the PCIOS Processor Interface Module (PIM) or SFS 2200. The length-

variable and status-variable must be defined as numeric variables. The INVALID KEY and

STATUS clauses are optional in conversational mode.

Examples:

DIR-KEY = DIR-KEY + 1 . Set to write next record.

WRITE DIR-FILE INVALID KEY ERR-1 . Write the record.

. *** Write a variable length INDEXED record...

R-LEN = SUB1 * 45 . Calc length of occurs items.

R-LEN = R-LEN + 32 . Add on fixed part of rec.

WRITE PAYMAST R-LEN INVALID KEY KEY-ERROR

I-QU PLUS-1 Programmer Reference SORT Interface

10-15 KMSYS Worldwide, Inc.

10.11 Special PCIOS Status Returned

The following status codes can be returned from I-QU PLUS-1:

Status Meaning

000000 Normal status returned.

900000 User has reached end-of-file.

900001 File is not assigned. Assign the file with a CSF command.

900002
Not enough memory to allocate file buffers. Use a smaller block size

or open fewer files at one time.

900003 Invalid key returned on READ, START, REWRITE or WRITE command.

900004
User specified a zero (0) block size and block size information not

found in file header. The file is probably not a PCIOS file.

I-QU PLUS-1 Programmer Reference SORT Interface

KMSYS Worldwide, Inc. 11-1

Chapter 11: SORT Interface

This group of commands gives the user the ability to SORT records within an I-QU PLUS-1

program. Records are passed to the SORT and returned from the SORT using the RDA.

SORT commands may not be used in conversational mode. The SORT interface routine will

require SORT work files to be assigned (XA, XB, through XZ are possible). The size of these

files, and the number of SORT work files, must be determined by the user depending on the

number and size of records to be SORTed and the core SORT buffer size. (Refer to the

SORT manual). I-QU PLUS-1 will dynamically assign the XA, XB and XC files as follows:

@ASG,T XA.,///5000

@ASG,T XB.,///5000

@ASG,T XC.,///5000

SORT Interface I-QU PLUS-1 Programmer Reference

11-2 KMSYS Worldwide, Inc.

11.1 RELEASE

This command RELEASEs a specified number of characters from the RDA to the SORT. The

number of characters RELEASEd may be specified as an integer value or as a database

record name. If a record name and an integer value are specified, the length of the named

DMS 2200 record plus the integer value will be RELEASEd. The RELEASE may be given as

RELEASEF, in which case the integer-characters parameter will be assumed to be FIELDATA.

Format:

RELEASE[F] {record-name [integer-characters] | integer-characters}

RELEASE may be abbreviated REL.

Examples:

. *** Release using the length of the PRODUCT-RECORD

. *** plus 20 additional characters.

RELEASE PRODUCT-RECORD 20

...

. *** Release a record of 35 FIELDATA characters in

. *** length.

RELEASEF 35

I-QU PLUS-1 Programmer Reference SORT Interface

11-3 KMSYS Worldwide, Inc.

11.2 RETURN

This command is used to RETURN records from the SORT subroutine to the RDA. The first

execution of the RETURN will cause the termination of the SORT release phase. The record

will be placed in the RDA exactly as released. The AT END clause is required.

Format:

RETURN AT END {program-label | BREAK}

RETURN may be abbreviated RET, with B for BREAK.

BREAK may only be used instead of a label when the RETURN is contained within a defined

procedure or an in-line DO block.

Example:

SORT-OUT PROCEDURE

 RETURN AT END BREAK . Return a record

 DISPLAY RDA PART-NAME + . list data from

 DISPLAY '-' + . the record area

 DISPLAY RDA PART-NUM

 ...

 ENDPROC

SORT Interface I-QU PLUS-1 Programmer Reference

11-4 KMSYS Worldwide, Inc.

11.3 SORT

The SORT command is used to initialize the SORT interface. It is used to specify the length

of records to be SORTed, and to define the SORT KEYS. This command must be used each

time a new SORT is to be done. A maximum of ten SORT KEYS may be specified. The

SORT command may be given as either SORT or SORTF. If SORT is used, the

maximum/minimum record lengths are assumed ASCII characters, while SORTF indicates

FIELDATA characters. The representation code specified affects the calculation used by

I-QU PLUS-1 in determining the record size in words.

Format:

SORT[F] maximum-record-length minimum-record-length ;

 key-definition-1 [… key-definition-10] [(core-buffer-size)]

SORT may be abbreviated SOR.

The minimum-record-length field indicates the shortest record being SORTed, when

SORTing variable length records. If records are fixed length, maximum-record-length and

minimum-record-length must be equal. All SORT KEYS must fall within the shortest record

length.

The format of key-definition-n is:

start-character,key-byte-length,data-type,sequence-specifier

Allowed data-types are the same as those used in direct RDA reference. Start-char is

relative to the first character of the SORT area. The SORT area may be defined by the

DEFINE RA SORT directive. If the DEFINE RA SORT directive is not used, the SORT area

begins in position one (1) of the RDA. See Section 3.1.1 for all possible data types.

Allowed sequence-specifiers are:

A for ascending,

D for descending.

The core-buffer-size parameter is optional. It is used to change the default SORT buffer

from 22.5K to the size required, depending on the SORT volume. Currently the maximum

sort buffer size allowed is 40,000. See the Unisys SORT manual for SORT file and buffer

sizing.

Examples:

The following initializes the SORT interface to SORT 80-character records on a 9(10)

COMP field starting in position 1, and an X(20) field starting in position 5.

SORT 80 80 1,4,UB9,A 5,20,DISP,D

This command sets up a SORT of variable length FIELDATA records on positions 2

through 7 alphanumeric ascending. A 40,000-word sort buffer will be allocated.

SORTF 100 20 2,6,DISP-1,A (40000)

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-1 KMSYS Worldwide, Inc.

Chapter 12: DMS 2200 Interface

The following commands are the I-QU PLUS-1 equivalent of standard ASCII COBOL/DML

statements. I-QU PLUS-1 rules for record selection and database currency are the same as

in standard DML. For a complete explanation of the function of DML commands, refer to the

DMS 2200 ASCII COBOL/DML Manual.

12.1 Subschema Invocation (INVOKE)

As with any COBOL/DML program, before database access can begin, a DMS 2200

subschema must be invoked. Unlike COBOL/DML, I-QU PLUS-1 is able to invoke a

subschema dynamically at runtime by using the INVOKE directive. The INVOKE directive

must be issued prior to the DML IMPART command. INVOKE will access the object schema

and subschema to initialize I-QU PLUS-1’s S$WORK and D$WORK. Upon INVOKE, the

I-QU PLUS-1 Primary Data Item Index file will be assigned, initialized, and built

automatically to be used with DML command editing and decoding, and in RDA item name

reference decoding. The INVOKE directive may be used to switch from one subschema to

another so long as the current subschema is not IMPARTed.

Format:

INVOKE subschema [{OF | IN} schema] ;

 [{FILE qualifier*filename | TIP [FILE] file-code} [FOR DMR-name] ;

 [|| APPLICATION application-number | ;

 KEY IS INVOKE-key | ;

 POINTER AREA LOAD | ;

 {NX | INDEX} ||]

INVOKE may be abbreviated INV, with APPL for APPLICATION.

The subschema specification may reference an ACOB-generated or UCOB-generated

subschema.

The OF/IN schema parameter is optional only when a default schema is configured for a

particular DMR or LDM (see the note, below).

The FILE/TIP clause is optional only when a default schema file is configured for a particular

DMR.

Please note: With DMS 2200, level 9R1 or higher, the term, “DMR”, is no longer used.

Instead, Unisys documentation now refers to a logical data manager (LDM) for DMS

running under Universal Data System (UDS) Control. I-QU PLUS-1 can interface with any

number of LDMs through UDS Control. This documentation, however, will continue to

use the term, “DMR”, in a generic fashion since I-QU PLUS-1 can interface with non-UDS

DMS applications (e.g., 8R3) as well as DMS applications running under UDS Control.

The FOR DMR-name parameter is also optional. The DMR-name refers to the multi-thread

invoke name specified for a particular “DMR” during dynamic configuration of I-QU PLUS-1

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-2 KMSYS Worldwide, Inc.

through COMUS. If it is not specified on the INVOKE directive, the first multi-thread DMR

configured will be used. The security feature allows the configuration of additional DMR

default values.

The optional APPLICATION application-number parameter allows I-QU PLUS-1 to explicitly

connect to an application group upon INVOKE. This parameter may be used when invoking

from a TIP schema file.

The EXEC will not allow a program to connect to two application groups within the same

program execution. You must exit I-QU PLUS-1 after utilizing an application group before

attempting to access a different application group. If you fail to exit before attempting

access to a different application group, DMS will return a rollback error 94 and display a

console message indicating that a STEP CONTROL error 067 was encountered.

The INVOKE-key literal, on the KEY IS parameter, is the LOCK FOR INVOKE literal specified

in the subschema. It is only required when coded in the subschema.

The POINTER AREA LOAD parameter is only required when initially loading pointer array

areas.

The optional NX/INDEX parameter controls the building of the primary data item index file

on INVOKE. If the NX option is used, the I-QU PLUS-1 primary data index file will be built

without data items. The NX option may be used if a permanent data item index file

(previously built by the QINDEX processor) is to be used instead of the dynamically built

primary index. The INDEX option will cause the primary data item index file to be built with

data items. If this parameter is not specified, the default, as dynamically configured

through COMUS, will be used.

For information on creating a permanent data item index file, see Chapter 18, “QINDEX

Reference”.

Note: If alternate records delivery areas are to be defined (DEFINE RA) for DMS records,

they should be specified after INVOKE but prior to IMPART.

Examples:

1. INVOKE ACCTS OF FINANCE TIP FILE 77 NX
INDEX DMS*DB-INDEX

2. INVOKE ACCTS OF FINANCE FILE TST*SCHFILE FOR STHREAD

3. INVOKE TRIV OF FINANCE FILE DMS*SCHFILE KEY IS 'FTRV'

Explanations:

In the first example, a TIP object schema file will be used. In addition, no data item entries

will be created in the primary data item index (NX option). A secondary data item index will

be required to reference data items by name in this case (INDEX directive). In addition, the

DMR name is not given, implying that the INVOKE will default to the first multi-thread DMR

configured.

In the second example, the object subschema and schema will be obtained from the EXEC

schema file, “TST*SCHFILE”, and is being used with the “STHREAD” DMR.

In the last example, the “TRIV” subschema requires an INVOKE key, “FTRV”, for processing.

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-3 KMSYS Worldwide, Inc.

12.2 INVOKE Considerations

The INVOKE accesses the object schema and subschema specified by the user. Using the

object schema and subschema tables, the INVOKE performs two major tasks: initialization

of D$WORK and S$WORK, and creation of the Primary Data Item Index File. In a COBOL

program, D$WORK is created by the ASCII Data Manipulation Language Preprocessor

(ADMLP), while S$WORK is created when the Subschema Data Definition Language (SDDL)

is compiled. Both D$WORK and S$WORK are collected into the object program by the MAP

processor. I-QU PLUS-1 creates both of these dynamically when the INVOKE directive is

processed.

The Primary Data Item Index File is used by I-QU PLUS-1 only during the editing of

commands. It contains definitions of areas, records, sets, database data names and data

items from the invoked subschema. The data item index file allows the processor to

translate names entered by the user to codes or RDA references to be used during actual

execution of commands.

The D$WORK and S$WORK areas are in all DMS 2200 programs, including I-QU PLUS-1.

They are used in communications between the program and the data management routine

(DMR). D$WORK contains lists of WORKING and/or COMMON STORAGE addresses of each

record and database data name in the user program. The

DMR uses these addresses to find records and database data names in your program.

S$WORK is where the DMR maintains information on run unit, area, record and set

currency. S$WORK is also used as workspace for many DMR operations.

S$WORK also contains the name of the schema and subschema, and the file from which the

DMR must obtain its copy of the schema and subschema absolutes. This fact is a very

important and often misunderstood point. When I-QU PLUS-1 processes the INVOKE, the

subschema file name is copied to S$WORK directly from the subschema absolute, not from

the file named on the INVOKE directive. Upon IMPARTing, the DMR uses the file name

found in S$WORK to find the subschema. The DMR then uses the schema file named in the

subschema tables to find the object schema, which is why I-QU PLUS-1 cannot simply move

the file name on the INVOKE directive to S$WORK. The DMR would still look for the schema

in the schema file named in the subschema tables. It is very important to insure that the

subschema and schema INVOKEd are the same as what the DMR will use. In a production

application environment, it is best to INVOKE from the production on-line schema file. On

the other hand, when using I-QU PLUS-1 for database reorganization, it is desirable to use

an alternate schema file. For reorganization purposes only, the SCHUTL processor has been

furnished to allow the subschema and schema object to be modified to force the DMR to

obtain the object from a specified alternate file (see the “I-QU PLUS-1 Database

Reorganization Utility Reference”).

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-4 KMSYS Worldwide, Inc.

12.3 DMS 2200 CALC Routine Definition (DEFINE C)

CALC routine definition is only required when the CALSIM command is to be used. The

purpose of this definition directive is to describe all parameters needed by I-QU PLUS-1 to

call DMSCALC or RANDENTIAL (independent of DMS 2200) to produce a resultant page

number when given a record key. By redefining the CALC key and using CALSIM, record

distribution may be tested in order to determine optimum, record placement strategies.

CALSIM is also often used to determine the page to which a CALC record will be placed on

initial load, and thus can facilitate a sort of the records by page number before initial load.

Format:

DEFINE C CALC-id {D | R | U1 | U2 | U3} [ASCII | FDATA] ;

 allocated-pages,number-of-chains ;

 [upper-range,lower-range,ovfl-every-pages,spcd-ovfl-pages,at-end-ovfl-pages] ;

 (key-def-1 [… key-def-n])

DEFINE may be abbreviated DEF.

The CALC-id may be any name desired by the user.

“D” indicates that the Unisys supplied calc routine, DMSCALC, is to be called; “R”, that

RANDENTIAL is to be called. “U1”, “U2” and “U3” apply to user installed CALC routines (see

the I-QU PLUS-1 Installation Guide).

ASCII or FDATA indicates that all key definitions will be either ASCII or FIELDATA

characters. If omitted, the assumed mode is ASCII.

The allocated-pages parameter specifies the total number of pages allocated to the area.

The number-of-chains parameter specifies the number of CALC chains to be used.

The upper-range and lower-range parameters specify the page range bounds in which the

record may be stored.

The ovfl-every-pages parameter specifies the interval at which interspersed overflow pages

are allocated.

The spcd-ovfl-pages parameter specifies the number of overflow pages in each interval.

The at-end-ovfl-pages parameter specifies the number of overflow pages allocated at the

end of the area.

See the DMS 2200 Schema Definition Manual for a more complete explanation of these

parameters.

The format of key-def-n is:

cccswwww

The key-def must be exactly eight (8) digits. The first three (ccc) digits specify the total

number of characters in the key field. The fourth digit (s) specifies the position within the

first word of the key field in which the first character of the key will be located. This will be

a value of from 1 to 4 for ASCII keys, or 1 to 6 for FIELDATA keys. The last four digits

(wwww) specify the starting word of the key within the record, where the first word is 0000.

The starting word is relative to the beginning of the RDA. For example, if a six-character

key, starting in character position 3 of the record were being defined, the key-def would

look like this: 00630000.

The definition allows a group level CALC key containing up to five elementary key items. A

group item is acceptable for RANDENTIAL, but is not normally allowed by DMSCALC. If

using the standard DMSCALC, the first key-def will be used. When using RANDENTIAL, up

to 10 key-defs may be specified, but the total number of significant characters in all the

keys put together must be 13 or less if any of the keys contain alphabetic characters, or 17

or less if all the keys are pure numeric.

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-5 KMSYS Worldwide, Inc.

If any of the parameters from upper-range through at-end-ovfl-pages are present, they

must all be present. Unused parameters within this group must be entered as zero (0).

Examples:

RANDENTIAL

DEFINE C REC-25 R 1200,1 (00630000,00210002)

In this example, a 1,200-page area with one CALC chain will be used by

RANDENTIAL when the CALSIM command is executed. The record has a

group level key made up of two fields. The first field is six characters

beginning in character position three. The second field is two characters

beginning in character position nine. The data looks like this:

 1111111

Character position -----1234567890123456

Word position ----------0000111122223333

Data elements ----------..xxxxxxyy......

DMSCALC

DEFINE C REC-25 D 2000,2,0,0,0,0,0 (00810001)

In this example, a 2,000-page area with two CALC chains will be used by

DMSCALC when the CALSIM command is executed for this definition. The

record has a single elementary level key of eight (8) characters beginning in

position five (5). The data looks like this:

 1111111

Character position -----1234567890123456

Word position ----------0000111122223333

Data elements ----------....kkkkkkkk....

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-6 KMSYS Worldwide, Inc.

12.4 DBDUMP File

I-QU PLUS-1 provides a file format that may be used for database record unloading and

reloading.

12.4.1 DBDUMP File Definition (DEFINE F)

The DBDUMP file format is fixed, and is called DBDUMP. The DBDUMP format may also be

read or written by COBOL programs. The COBOL record definition of the DBDUMP file may

be found in Chapter 17.

Format DBDUMP:

DEFINE F[F] filename DBDUMP [length,block-size {RECORDS | CHARACTERS}]

DEFINE may be abbreviated DEF, with RECS or RECORD for RECORDS and CHARS for

CHARACTERS.

DBDUMP files may be externally assigned to either tape or disk. If assigned to tape, they

will be in SDF format.

The length parameter specifies the number of characters per record. The block-size can be

specified as the number of records or characters per block. If the optional

RECORDS/CHARACTERS keyword is not specified, I-QU PLUS-1 will default to records per

block. If block-size is zero (0), I-QU PLUS-1 will determine the block size by reading the

physical record header. The zero specification is only valid when opening DBDUMP files for

INPUT. If the length,block-size parameters are omitted, the default record size is the same

as the RDA size with a blocking factor of two records per block. With a default RDA size of

4,000 words, the first DBDUMP file opened will require 12,000 words of memory (8k for

buffers and 4k for the record transfer area) and each subsequent DBDUMP file opened will

require 8,000 additional words of memory (the record transfer area is shared).

The required size of the record area (see Chapter 17 “DBDUMP File Description”) is the sum

of the largest data record to be written plus the number of control words to be written plus

12 words for the record header. In other words, if the largest DMS record is 100 words and

10 words are going to be written for control words, the required record size is 122 words or

488 ASCII characters (the record size is specified in characters as it is for all DEF F

directives). Specifying the record size and a blocking factor of two records per block would

require only 366 words of storage for the first DBDUMP format file opened versus the

12,000 words required in the default case.

Additionally, the DEFINE FF format may be used if you wish to specify your record size in

FIELDATA characters rather than ASCII characters. Note that the data format is NOT

changed — only the conversion from characters to words for the record size is affected.

Thus the required space in the record for the overhead of the header on the DBDUMP

records is 12*6 (72) FIELDATA characters or 12*4 (48) ASCII characters.

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-7 KMSYS Worldwide, Inc.

12.4.2 CLOSE (DBDUMP)

The CLOSE command is used to close a DBDUMP file. If the file is opened for OUTPUT, end-

of-file processing will take place. Disk files will not automatically be @FREEed; tape files

will automatically rewind. Files may be closed and re-opened with a different usage mode.

Format:

CLOSE filename

CLOSE may be abbreviated CL.

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-8 KMSYS Worldwide, Inc.

12.4.3 OPEN (DBDUMP)

The OPEN command is used to ready a DBDUMP file for use in a program. It establishes the

usage and access modes for the file. The file must be assigned to the run before the OPEN

is executed.

Format:

OPEN filename {INPUT | OUTPUT} SEQ

OPEN may be abbreviated O, with I for INPUT and O for OUTPUT.

INPUT and OUTPUT are usage modes and have the following meanings:

INPUT The file will only be read.

OUTPUT The file will only be written. Any existing data will be destroyed.

DBDUMP files may only be accessed sequentially.

Note: If more than one DBDUMP needs to be OPEN concurrently, the file with the largest

number of characters per record (see the DEF F directive) should be opened first. This

requirement is due to an internal addressing constraint.

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-9 KMSYS Worldwide, Inc.

12.4.4 READ (DBDUMP)

This form of the READ command is used to read an I-QU PLUS-1 formatted DBDUMP file.

The file must have been previously opened (OPEN filename INPUT SEQ). The AT END label

must be specified when not in conversational mode.

If the CONTROL clause was specified on the WRITE, the control words will be put into the

RDA in the same position from which they were written. After each read of the DBDUMP

file, the reserved variable C-O-T will be set to the record name contained in the DBDUMP

record header. The C-O-T variable may then be tested to determine the record type just

read.

Format:

READ filename [AT END { program-label | BREAK}]

The AT END clause must be present when not in conversational mode.

BREAK may only be used instead of a label when the READ is contained within a defined

procedure or an in-line DO block.

Following the read of a DBDUMP file, the reserved numeric variable REC$LEN will contain

the actual length of the record read in words. This length may be useful when processing

variable length data records.

Example:

LOOP

 READ DBFILE AT END END-RUN . Read DBDUMP file

 IF C-O-T = 'PRODUCT-RECORD' . PRODUCT record?

 STORE PRODUCT-RECORD . Yes, store record

 ENDIF

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-10 KMSYS Worldwide, Inc.

12.4.5 WRITE (DBDUMP)

The WRITE command is used to write a specified number of words from the RDA to an

I-QU PLUS-1 formatted DBDUMP file. The file must have been previously opened (OPEN

filename OUTPUT SEQ).

The user may specify a string of control words within the RDA to be inserted in front of the

data being written. This option may be used to move sort keys to a common position in the

dump file record when multiple record types are being written. Each time a DBDUMP file

record is written, the current value of the reserved variable C-O-R will be placed in the

record’s header. This value will be available in the reserved variable C-O-T when the file is

read back into I-QU PLUS-1 as a DBDUMP file. The number of data words to be written to a

DBDUMP file may be specified as an integer, or by naming an invoked database record. If a

record name is used with an integer value, the length of the record will be the length of the

database record plus the integer value. This allows the user to append additional

information to the database record being written.

Format:

WRITE filename {record-name [integer-words] | integer-words} ;

 [CONTROL (start-word,number-of-words)]

WRITE may be abbreviated W.

The CONTROL clause is only valid if the file is defined as a DBDUMP file.

The record-name parameter is used to indicate that the length of the write is to be taken

from the named DMS 2200 database record, not the area from which the data is to be

written. If record-name is used with integer-words, the two lengths will be added together.

Example:

DEFINE F DUMPTAPE DBDUMP

...

WRITE DUMPTAPE REQDTL 5 CONTROL (251,9)

In the above example, the record written will be the length of the database record

REQDTL plus five words. Nine (9) words of control information is being retrieved

from word 251 (RDA ASCII character position 1001) and placed in the record prior to

the data. When this record is read back in by I-QU PLUS-1, this control information

will be placed back in the same place: word 251 for 9 words.

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-11 KMSYS Worldwide, Inc.

12.5 DML Commands

Most commands available in standard COBOL/DML are also available in I-QU PLUS-1. The

ON ERROR and AT END clauses are not included in I-QU PLUS-1 DML syntax. The

I-QU PLUS-1 procedural IF command is used to determine these conditions.

Unless otherwise stated, area-name, record-name and set-name may be given as a specific

area, record or set name, or as alphanumeric variables, which contain a valid area, record

or set name (known as generalized names in DMS 2200 DML terminology). When an

alphabetic variable is used in place of an actual name, the variable length must be specified

as follows:

area-name 12 characters

record-name 30 characters

set-name 30 characters

I-QU PLUS-1 may be dynamically configured in COMUS to allow abbreviation of AREA,

RECORD and SET names. If this option is taken, the user may enter either the first “N”

characters of the name, or the entire name, in all cases except where the name is used as a

literal enclosed in quotes. “N” characters will vary depending on the number of characters

required to identify the AREA, RECORD, or SET. For example, if all record names begin with

the letter “R” and the three-digit record code (example: R0002-PARTS-MASTER-CONTROL),

I-QU PLUS-1 may be configured to recognize the record name when only the first five

characters have been entered (example: R0002).

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-12 KMSYS Worldwide, Inc.

12.6 ACQUIRE

The ACQUIRE command is used to retrieve a list of database keys for a specified set whose

mode is pointer array or indexed pointer array. The ACQUIRE command functions in the

same manner as the standard COBOL/DML ACQUIRE command. The only difference is the

I-QU PLUS-1 acquire list is specified as a location within the RDA rather than a COBOL

WORKING-STORAGE location. The acquire list in the RDA is in the same format as in a

COBOL/DML program. The first word of the specified RDA location contains the number of

DBKs retrieved followed by the list of DBKs.

Format:

ACQUIRE number-of-keys [BEGINNING database-key] ;

 TO RDA RDA-reference FROM set-name [USING DEFINED KEYS]

ACQUIRE may be abbreviated ACQ.

The RDA reference must be a multiple of four (4) because each database key will occupy

one word. Each DBK may be referenced using the RDA reference “(n,4) UB9” (n = start

position).

Example:

The following is an example of the ACQUIRE command used to obtain two lists of database

keys which will then be matched for retrieval of records that participate in both pointer

array sets.

DEF N DBKVAR . Number of DBKs

DEF RDA DBKLIST1 (1001,400) . A 100-word ACQUIRE list

DEF RDA DBK1 (1001,4) UB9 . A DBK in ACQUIRE list 1

DEF RDA DBKLIST2 (1501,400) . Another ACQUIRE list

DEF RDA DBK2 (1501,4) UB9 . A DBK in ACQUIRE list 2

DEF SUB X1 DBK1 . Subscript for list 1

DEF SUB X2 DBK2 . Subscript for list 2

 ...

 . *** Owner of sets S0002-PART-USE and S0003-PART-MOD

 . have been made made current of set. Now

 . ACQUIRE lists of DBKs for both sets.

 RDA DBKLIST1 = $LOVALS . Clear list of binary zeros

 RDA DBKLIST2 = $LOVALS

 DBKVAR = 50 . Set to retrieve 50 keys

 ACQUIRE DBKVAR TO RDA DBKLIST1 FROM S0002-PART-USE

 ACQUIRE DBKVAR TO RDA DBKLIST2 FROM S0003-PART-MOD

 DO DBK-MATCH

...

 . *** This proc matches DBKs from both ACQUIRE lists.

 . When a DBK is found in both lists, the

 . FETCH-IT procedure is executed.

DBK-MATCH PROCEDURE

 IF DBK1 = 0 . If either list is empty

 OR DBK2 = 0 . or no rec meets criteria

 GO DM-EXIT . EXIT this routine

 ENDIF

 X1 = 1 . 1stDBKinlist1

DM005

 X2 = 1 . 1st DBK in list 2

 Z = RDA DBK1 :X1 . Isolate 1 DBK from list 1

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-13 KMSYS Worldwide, Inc.

DM010

 IF RDA DBK2 :X2 = Z . Is it in list 2?

 DO FETCH-IT . In both lists, FETCH it.

 ENDIF

 X2 = X2 + 1 . Increment list 2 subscript

 IF RDA DBK2 :X2 = $LOVALS . End-of-list-2?

 X1 = X1 + 1 . Increment list 1 subscript

 IF RDA DBK1 :X1 = $LOVALS . End-of-list-1?

 GO DMEXIT . Yes, done......

 ENDIF

 GO DM005 . Repeat match

 ENDIF

 GO DM010 . Match next entry

DMEXIT

 ENDPROC

 ...

FETCH-IT PROCEDURE

 FETCH1 Z . FETCH member using DBK

 DISPLAY RDA

 ...

ENDPROC

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-14 KMSYS Worldwide, Inc.

12.7 CALSIM

The CALSIM command is used to interface with the DMS 2200 CALC routines: DMSCALC or

RANDENTIAL. CALSIM is used in conjunction with the DEFINE C (CALC key definition)

directive to obtain a resultant page number. The page number obtained may be used to

determine record distribution throughout an area. The CALC routine will use the data

currently in the RDA relative to position one and the parameters in the specified CALC

definition. The resultant page number will be set into the named numeric variable. The

resultant chain number will be placed in the predefined variable REC$LEN.

Format:

CALSIM CALC-id result-variable [area-name-variable]

CALSIM may be abbreviated CA.

The CALC-id is the name used on a previously defined, DEFINE C directive.

The optional area-name-variable specification only applies when locally installed user CALC

routines are being simulated (requires local installation). It is used to receive the resulting

area name output by some user CALC routines.

Example:

DEFINE C CALC-X D 12000 1 (01210000) . CALC key def.

DEFINE N PAGE-RESULT . Resulting pg no.

 ...

 . CALC on current RDA data and place result in

 . PAGE-RESULT.

CALSIM CALC-X PAGE-RESULT

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-15 KMSYS Worldwide, Inc.

12.8 CLOSE

The CLOSE command releases database areas and associated quick-look files. The

command may be used to close a single area or all areas currently open.

Format:

CLOSE {ALL | area-name}

CLOSE may be abbreviated CL.

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-16 KMSYS Worldwide, Inc.

12.9 DELETE

The DELETE command is used to delete a record from the database. If ONLY is specified,

the record will not be deleted if it is the owner of any VIA-SET records. If ALL is specified,

the record and all members of any sets of which it is the owner will be deleted. The ONLY

and ALL options have the same meaning as in standard COBOL/DML.

Format:

DELETE record-name [ALL | ONLY]

DELETE may be abbreviated DEL.

Examples:

FETCH4 FIRST PRODUCT-REC PRODUCTS AREA

DELETE PRODUCT-REC ONLY . Delete, if no members

...

FETCH3 NEXT PRODUCT-REC PRODUCTS AREA

DELETE PRODUCT-REC ALL . Delete it & all members.

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-17 KMSYS Worldwide, Inc.

12.10 DEPART

The DEPART is used to disconnect I-QU PLUS-1 from the DMR. The ROLLBACK option may

be used to negate any updates that were done during the session.

Format:

DEPART [ROLLBACK]

DEPART may be abbreviated DEP.

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-18 KMSYS Worldwide, Inc.

12.11 DISPLAY Database Error

This form of DISPLAY will print a fixed format DML error status. When executed, it will not

disturb the current contents of the print buffer.

Format:

DISPLAY DBERROR

DISPLAY may be abbreviated D, with ERROR for DBERROR.

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-19 KMSYS Worldwide, Inc.

12.12 FETCH/FIND

I-QU PLUS-1 supports all formats of the FETCH/FIND command. In the following

descriptions, the word FETCH will be used in all formats. The same formats will apply to the

FIND command.

12.12.1 FETCH/FIND Format-1

The FETCH Format 1 is used to obtain any record directly instead of by its specific location

mode. A Format 1 FETCH can be executed in one of two ways:

1. A numeric variable containing a database key can be set;

2. An alpha variable containing an area-name and a numeric variable containing an

area-key can be set.

The record-name is optional on the Format 1 FETCH. If used, it must be given as an actual

record name, not a variable.

Format:

{FETCH1 | FIND1} [record-name] ;

 {database-key-variable | area-name-variable,area-key-variable}

 [SUPPRESS-clause]

FETCH1 and FIND1 may be abbreviated F1 and FN1, respectively.

The format of the suppress clause can be found in Section 12.25 at the end of this chapter.

Examples:

DEFINE N HOLDDBK . To hold database key.

 HOLDDBK = RDA DBK-OF-LINE-ITEM . Get DBK

 FETCH1 HOLDDBK . Fetch the line item.

 ...

 G-AREA-NAME = 'PRODUCTS' . Set area-name.

 G-AKEY = (1,1) . Set area-key to page 1

 . and record 1.

FIND1 PRODUCT G-AREA-NAME G-AKEY

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-20 KMSYS Worldwide, Inc.

12.12.2 FETCH/FIND Format-2

The FETCH Format 2 is used to make a record current of run unit. The record must be

current of that record type (i.e., previously accessed).

Format:

{FETCH2 | FIND2} [record-name] ;

 {database-key-area | area-name-variable,area-key-variable} ;

 [suppress-clause]

FETCH2 and FIND2 may be abbreviated F2 and FN2, respectively.

The format of the suppress clause can be found in Section 12.25 at the end of this chapter.

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-21 KMSYS Worldwide, Inc.

12.12.3 FETCH/FIND Format-3

The FETCH Format 3 is used to retrieve unspecified record types within sets or areas using

set or area currency.

Format:

{FETCH3 | FIND3} {CURRENT | NEXT | PRIOR | FIRST | LAST | OWNER} ;

 {set-name SET | area-name AREA} ;

 [SUPPRESS-clause]

FETCH3 and FIND3 may be abbreviated F3 and FN3, respectively. CURRENT may be

abbreviated CURR, with N for NEXT, P for PRIOR, F for FIRST, L for LAST, O for OWNER, S

for SET and A for AREA.

The format of the suppress clause can be found in Section 12.25 at the end of this chapter.

Examples:

FETCH3 LAST PRODUCTS AREA

FIND3 CURRENT PROD-USAGE SET

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-22 KMSYS Worldwide, Inc.

12.12.4 FETCH/FIND Format-4

The FETCH Format 4 is similar to the FETCH Format 3, except that a specific record type is

to be selected.

Format:

{FETCH4 | FIND4} {NEXT | PRIOR | FIRST | LAST} record-name ;

 {set-name SET | area-name AREA} ;

 [SUPPRESS-clause]

FETCH4 and FIND4 may be abbreviated F4 and FN4, respectively. NEXT may be

abbreviated N, with P for PRIOR, F for FIRST, L for LAST, S for SET and A for AREA.

The format of the suppress clause can be found in Section 12.25 at the end of this chapter.

Examples:

FETCH4 FIRST PRODUCT-REC PRODUCTS AREA

FIND4 LAST ASSEMBLY-REC PARTS-USAGE SET

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-23 KMSYS Worldwide, Inc.

12.12.5 FETCH/FIND Format-5

The FETCH Format 5 is used to retrieve a record using its primary location mode. Before a

Format 5 FETCH is executed, it may be necessary to set database data names specified in

the schema using the SET DBDN command. If a record key is to be initialized, it may be set

into the RDA using the SET RDA command.

Format:

{FETCH5 | FIND5} [NEXT [DUPLICATE] | PRIOR | FIRST | LAST] record-name ;

 [SUPPRESS-clause]

FETCH5 and FIND5 may be abbreviated F5 and FN5, respectively. NEXT may be

abbreviated N, with DUP for DUPLICATE, P for PRIOR, F for FIRST and L for LAST.

The format of the suppress clause can be found in Section 12.25 at the end of this chapter.

Examples:

DBDN PROD-AREA = 'PRODUCTS'

RDA PRODUCT-ID = 101100 . Set record’s key.

FETCH5 PRODUCT-REC . Fetch the record.

FIND5 NEXT DUPLICATE PRODUCT-REC . Find dup., if any.

...

DBDN DIR-AREA = 'DIRECT-AREA' . Set area name

DBDN DIR-KEY = 5,1 . Set area key

FETCH5 DIRECT-REC . Fetch direct rec.

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-24 KMSYS Worldwide, Inc.

12.12.6 FETCH/FIND Format-6

The FETCH Format 6 is used to retrieve a record via a specific set. If the optional USING

clause is included, the record will be selected based on the values of the data items

specified.

Format:

{FETCH6 | FIND6} record-name set-name ;

 [USING data-item-1 [… ,data-item-n]] ;

 [SUPPRESS-clause]

FETCH6 and FIND6 may be abbreviated F6 and FN6, respectively.

Where data-items may be one or more data field names defined within the object record.

A data-item must be defined in the schema and may not be qualified.

The format of the suppress clause can be found in Section 12.25 at the end of this chapter.

Example:

RDA PROD-TYPE = 'T'

RDA PROD-CAT = '2A'

FETCH6 PROD-DET PROD-DET-SET USING PROD-TYPE PROD-CAT

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-25 KMSYS Worldwide, Inc.

12.12.7 FETCH/FIND Format-7

The FETCH Format 7 is generally used following positioning within a set to find a record with

matching values on the specified data items. The record-name is optional. If used, it must

be current of run unit and cannot be given as a variable.

Format:

{FETCH7 | FIND7} [record-name] set-name USING data-item-1 [… ,data-item-n] ;

 [SUPPRESS-clause]

FETCH7 and FIND7 may be abbreviated F7 and FN7, respectively.

Where data-items may be one or more data field names defined within the object record.

A data-item must be defined in the schema and may not be qualified.

The format of the suppress clause can be found Section 12.25 at the end of this chapter.

Example:

FETCH7 PROD-DET PROD-DET-SET USING PROD-TYPE PROD-CAT

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-26 KMSYS Worldwide, Inc.

12.13 FREE

The FREE command is used to release all locks caused by the KEEP command, or any

updates that have taken place. The FREE also releases all QUICK-LOOKS, making all

updates permanent.

Format:

FREE

FREE may be abbreviated FR.

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-27 KMSYS Worldwide, Inc.

12.14 IF (DML)

The DML IF command is used to determine whether a record participates in a set, or

whether a set is empty. When in input mode, the IF command must be accompanied by an

ENDIF command. For a complete description of IF/ENDIF pairs, refer to the IF description in

the “General Procedure Commands” chapter of this manual.

In conversational mode, I-QU PLUS-1 will display the resulting ‘TRUE’ or ‘FALSE’ condition

upon execution.

Format:

IF { [NOT] {OWNER | MEMBER} set-name [SET] | ;

 set-name [NOT] EMPTY}

SET may be abbreviated S.

Restrictions: The DML IF cannot be extended by AND and OR operators as with the

procedural IF; however, the DML IF may be used in conjunction with the ELSE and may be

nested within other DML IF or procedural IF commands.

Examples:

FETCH4 NEXT PRODUCT-REC PRODUCTS AREA

IF NOT OWNER PRODUCT-ON-ORDER . Any members?

...

ENDIF

The following is an example of a DML IF nested within a procedural IF:

IF ERROR-NUM = 0

 IF PRODUCT-ON-ORDER EMPTY . Is the set empty?

 GO END-RUN

 ELSE

 DO PRINT-RECS . Set not empty.

 ENDIF

ENDIF

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-28 KMSYS Worldwide, Inc.

12.15 IMPART

The IMPART command is used to connect I-QU PLUS-1 to the DMR. An IMPART cannot be

done unless a successful INVOKE has been completed. If a ROLLBACK label is specified,

control will be returned at the label upon receipt of a rollback error. The rollback error code

will be placed in the reserved variable RBCODE. If no ROLLBACK label is specified,

I-QU PLUS-1 will perform a controlled abort upon receipt of a rollback error. Control is

always returned to the user in conversational mode.

Format:

IMPART [ROLLBACK program-label]

IMPART may be abbreviated IMP.

Note: If alternate records delivery areas are to be defined (DEFINE RA) for DMS records,

they should be specified after INVOKE but prior to IMPART.

Example:

 IMPART ROLLBACK RB-ERR-PROCESS

 ...

RB-ERR-PROCESS

 DISPLAY DBERROR

 DISPLAY "Processing abandoned"

 STOP EXIT

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-29 KMSYS Worldwide, Inc.

12.16 INSERT

The INSERT command is used to include the current record as a manual member of a set.

The record must be defined as a participant in the set, and the owner record must be

current of set type. The user may specify ALL sets, in which case all owner records must be

current.

Format:

INSERT record-name {set-name | ALL}

INSERT may be abbreviated INS.

Example:

FIND5 ELT-MSTR . Find manual owner

FIND2 STEP-DTL . Make current

INSERT STEP-DTL ELT-USAGE . INSERT into set.

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-30 KMSYS Worldwide, Inc.

12.17 KEEP

The KEEP command is used to extend a record currency lock. Currency locking is done to

keep other runs from updating a particular record occurrence while the user is retrieving

other records. The object of the KEEP must be current of run unit.

Format:

KEEP record-name

KEEP may be abbreviated K.

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-31 KMSYS Worldwide, Inc.

12.18 MODIFY

The MODIFY command is used to replace the contents of a record in the database with the

contents of the RDA. The object record must be current of run unit. The optional data-

item-name(s) may be used to change the record’s set participation (qualified modify). The

owner identified by the data-item-name must be current of the set where participation is to

change.

Format:

MODIFY record-name [data-item-name-1 [… data-item-name-n]]

MODIFY may be abbreviated M.

The optional data-item-name(s) must be defined in the schema and may not be qualified. A

data-item-name must be a field name in a defined owner record of the record being

modified. The data-item-name identifies the set in which set participation is to change.

Examples:

FETCH5 PRODUCT-REC . Fetch the product record.

RDA PRODUCT-DESC = 'XYZ' . Change a field

MODIFY PRODUCT-REC . Modify the database.

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-32 KMSYS Worldwide, Inc.

12.19 OPEN

The OPEN command is used to specify which database areas are to be accessed and in

which usage mode. The default usage mode is retrieval.

Format:

OPEN {area-name | ALL} [{RETRIEVAL | UPDATE} [EXCLUSIVE] | LOAD]

OPEN may be abbreviated O, with RET for RETRIEVAL, U for UPDATE, EX for EXCLUSIVE and

L for LOAD

The ALL option may not be specified with a usage mode of LOAD.

Examples:

OPEN CUSTOMERS UPDATE EXCLUSIVE

OPEN PRODUCTS LOAD

OPEN ALL . Opens all areas for retrieval

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-33 KMSYS Worldwide, Inc.

12.20 REMOVE

The REMOVE command is used to remove a record from a manual set relationship. The

record must be current of run unit. The ALL option may be used, if the record is to be

removed from all manual sets in which it currently participates.

Format:

REMOVE record-name {set-name | ALL}

REMOVE may be abbreviated REM.

Examples:

FETCH3 NEXT SERIAL SET . Get manual member.

REMOVE SERIAL-REC SERIAL . Remove record.

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-34 KMSYS Worldwide, Inc.

12.21 SET CURRENT

Format 1 and 2 of the SET CURRENT command is equivalent to a MOVE CURRENCY STATUS

command in ASCII COBOL/DML. The third format allows a user change file to be specified

when executing in the DMS test mode (O-option on the I-QU PLUS-1 processor call).

Format-1:

[SET] CURRENT {DBK | AKEY | ANAME} ;

 [= {RU | RECORD record-name | AREA area-name | SET set-name}]

Format-2:

[SET] CURRENT {AKEY | ANAME} = database-key-variable

Format-3:

[SET] CURRENT CHANGEFILE = {RDA RDA-recerence | alpha-variable}

The command keyword “SET” is implied and may be omitted. SET may be abbreviated S.

CURRENT may be abbreviated CURR, with A for AREA and S for SET.

When the DBK option is used, the resulting database key is set in the reserved variable,

C-DBK. When using the AKEY option, the resulting area key is set in the reserved variable

C-AKEY. When the ANAME option is used, the resulting area name is set into the reserved

variable C-AREA-NAME.

Format 3 only applies when interfacing with DMS 10R1 or a higher release level. The SET

CURRENT CHANGEFILE command is not applicable to the single-thread interface. The RDA-

reference or alpha-variable must contain a valid UREP 2200 storage area name (see UDS

DMS 2200 Administration and Support Guide, 7830 7568, for more on change file

considerations). The storage area name must be comprised of 12 or fewer ASCII

characters. The SET CURRENT CHANGEFILE command must be issued prior to IMPART. If

the change file is an EXEC file (not TIP), it must be assigned prior to IMPART. If test mode

is specified and no SET CURRENT CHANGEFILE command is issued prior to IMPART, the

system change file will be used.

Examples:

1. FETCH4 PRODUCT-REC PRODUCTS AREA

 CURRENT DBK . Save currency

 ...

 FIND1 PRODUCT-REC C-DBK

 CURRENT ANAME = RECORD PROD-REC . C-AREA-NAME = area

 . name of the current

 . PROD-REC.

2. DEF A CFILE 12 'DBUFILE' . DBUFILE is storage-area

 . in UREP 2200

 CSF X '@ASG,A MY*DBUFILE.' . EXEC area must be

 IF X < 0 . pre-assigned.

 FACERR X

 STOP EXIT

 ENDIF

 CSF X '@USE DBUFILE.,MY*DBUFILE.'

 IF X < 0

 FACERR X

 STOP EXIT

 ENDIF

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-35 KMSYS Worldwide, Inc.

 SET CURRENT CHANGEFILE = CFILE

 IMPART

3. DEF RDA CHGFILE (*,12)

 . . .

 SET RDA CHGFILE = 'MY-CHANGE' . MY-CHANGE is TIP

 CURR CHANGEFILE = RDA CHGFILE . storage area.

 IMPART

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-36 KMSYS Worldwide, Inc.

12.22 SET DBDN (Database Data Name)

This form of the SET command takes a value from the data storage area and places it in a

specified database data name for use by a DML command. The database data name may

be an area key, database key, area name, etc. Data types must be compatible. The

referenced database data name must be defined in the currently invoked subschema.

Format:

[SET] DBDN database-data-name = {integer-literal [,integer-literal] | ;

 variable-name [,variable-name] | ;

 'string-literal ' } ;

 [(byte-length) {DISP | DISP-1 | COMP | COMP-4}]

The command keyword “SET” is implied and may be omitted. SET may be abbreviated S.

The database-data-name must be defined in the currently invoked subschema.

The byte-length is the length of the database data name in bytes. The data type (DISP,

DISP-1, COMP and COMP-4) are used to describe the form of the database data name. The

byte-length and data type parameters must only be used when the database data name

item being set does not have a usage mode of AREA-KEY, DATABASE-KEY, AREA-NAME,

RECORD-NAME, or SET-NAME. These database data names have a form specifically defined

within the object schema — no others, such as alias keys, do.

The byte-length for COMP and COMP-4 fields should be obtained from the conversion chart

shown in Section 3.1.1.

Examples:

DBDN PRODAREA = 'PRODUCTS' . Set an area-name for calc.

DBDN LOCAKEY = 501,1 . Set an area-key to page

 . 501, record 1.

DBDN LOCAKEY = HOLD-AREA-KEY . Set an area-key from a

 . variable.

DBDN CONTROL-KEY = HOLD-PG, HOLD-REC

 . Set an area-key from two

 . variables.

DBDN ACCESS-CTL = '$XXX123' (12) DISP

 . Set an access control

 . key.

DBDN PART-ALIAS = '123-0931-12' (30) DISP-1

 . Set a FIELDATA alias key.

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-37 KMSYS Worldwide, Inc.

12.23 SET NON-FATAL (DML Errors)

This form of the SET command is used to eliminate the need to check for fatal error

conditions resulting from the execution of DML commands. When a DML general error

condition is encountered during execution, the non-fatal list will be checked. If the error

number is not included in the list, I-QU PLUS-1 will execute its DML error termination

routine and abort. Initially, the non-fatal list includes general error numbers 6, 7 and 13.

Error numbers may be added and removed from the list at any time using this command.

Up to 50 general errors may be specified. Rollback errors may not be specified as non-fatal.

Check your DML Reference Manual for the meanings of these error codes.

Format:

[SET] NON-FATAL error-num {ON | OFF}

The command keyword “SET” is implied and may be omitted. SET may be abbreviated S.

Examples:

NON-FATAL 5 ON . Make error-number 0005 non-fatal.

NON-FATAL 13 OFF . Make error-number 0013 fatal.

DMS 2200 Interface I-QU PLUS-1 Programmer Reference

12-38 KMSYS Worldwide, Inc.

12.24 STORE

The STORE command is used to store the contents of the RDA to a specific DMS 2200

record type. The data in the RDA may be created by using the SET RDA command, or it

may be the result of a previous FETCH.

Format:

STORE record-name [SUPPRESS-clause]

STORE may be abbreviated STR.

The format of the suppress clause can be found in Section 12.25 at the end of this chapter.

Examples:

RDA PRODUCT-ID = 1011234

RDA PRODUCT-DESC = 'ABCDE'

DBDN PROD-AREA = 'PRODUCTS' . Set the area name DBDN.

STORE PRODUCT-REC . Store the record.

I-QU PLUS-1 Programmer Reference DMS 2200 Interface

12-39 KMSYS Worldwide, Inc.

12.25 SUPPRESS Clause

The SUPPRESS CLAUSE may be used as the last parameter of any FETCH/FIND or STORE

command. It is used to suppress updating specified levels of currency when executing DML

commands.

Format:

SUPPRESS {ALL | ;

 || AREA | ;

 RECORD | ;

 {SET | ;

 set-name-1 [… set-name-n] } || }

SUPPRESS may be abbreviated SUP, with A for AREA and S for SET.

The AREA, RECORD and SET options may be used in combination. If the ALL option is used,

no other option may be used. If the SET option is used, then set-names may not be listed.

Examples:

Suppress update of area and set currency.

FETCH3 NEXT PROD-DETAIL-SET SET SUPPRESS AREA SET

Suppress update of set currency for the two named sets. All other currency

indicators will be updated.

FETCH5 PROD-MASTER SUPPRESS PROD-DET-SET PRSPL-SET

I-QU PLUS-1 Programmer Reference Direct I/O Access

13-1 KMSYS Worldwide, Inc.

Chapter 13: Direct I/O Access

The I-QU PLUS-1 Processor can access sector formatted mass-storage and tape files using

direct I/O.

13.1 DIO (DEFINE F)

For DIO, there is no I/O buffering used; data is transferred directly to and from the RDA.

Mass-storage files may be EXEC, TIP/FCSS or TIP/DMS files. Tape files may be any format.

Format:

DEFINE F filename DIO maximum-I/O-length-in-words

DEFINE may be abbreviated DEF.

To define a TIP/FCSS file, specify the filename as follows:

TIP#nnn

To define a TIP/DMS file, specify the filename as follows:

TIPDMS#nnn

Where nnn is the FCSS or DMS file code, i.e., TIPDMS#21 for DMS area code 21, or

TIP#200 for FCSS file 200. If an FCSS or DMS file code of 0 (zero) is specified, the

value in the reserved variable S$ will be used as the file code when the file is

accessed in a DIO command.

The maximum-I/O-length-in-words must not exceed the length of the RDA. This value will

be used if the record is offset using a DEFINE RA directive.

Examples:

1. DEFINE F WORK-FILE DIO 1000

2. DEFINE F TIPDMS#151 DIO 448

3. DEFINE F TIP#66 DIO 896

Explanations:

Example 1 defines an EXEC file for DIRECT I/O. A maximum of 1000 words may be

read from, or written to, the file in a single operation.

Example 2 defines a TIPDMS file (possibly a DMS 2200 database area) for DIRECT

I/O.

Example 3 is a definition for a TIP/FCSS file.

Direct I/O Access I-QU PLUS-1 Programmer Reference

13-2 KMSYS Worldwide, Inc.

13.2 DIO

The DIO command is used to perform direct I/O functions on a file defined for direct I/O.

Data will be transferred directly between the RDA and the file using the IOW$ (DM$IOW in

the case of TIP/DMS files) executive request, or the TIP FCSS file control primitives. Files

accessed via the DIO command are not opened or closed as with PCIOS files. In the case of

FCSS I/O, the three status words associated with the FCSS request will precede the data

portion of the record in the RDA, automatically created for the user by the file DEFine.

Format:

DIO filename function status-variable count {sector-address | record-number}

To access a TIP/FCSS file, specify the filename as follows:

TIP#nnn

To access a TIP/DMS file, specify the filename as follows:

TIPDMS#nnn

Where nnn is the FCSS or DMS file code, i.e., TIPDMS#21 for DMS area code 21, or

TIP#200 for FCSS file 200. If an FCSS or DMS file code of 0 (zero) is specified, the value in

the reserved variable S$ will be used as the file code when the file is accessed in a DIO

command.

For EXEC and TIP/DMS files, the available functions are:

WRITE Mass-storage or tape;

WRITEEOF Tape only;

READ Mass-storage or tape;

READBACK Tape only (read backwards);

RDLOCK Mass-storage read with lock;

UNLOCK Unlock mass-storage locked by RDLOCK;

REWIND Tape only;

MOVE+ Tape only (move forward nn files);

MOVE- Tape only (move backward nn files);

SPACE+ Tape only (space forward nn blocks);

SPACE- Tape only (backspace nn blocks).

EXEC files must be @ASGed to the run before being accessed (see CSF command).

I-QU PLUS-1 Programmer Reference Direct I/O Access

13-3 KMSYS Worldwide, Inc.

For TIP/FCSS files, the available functions are:

RD Read;

RL Read and Lock;

LK Lock;

WR Write;

WW Write without lock;

WL Write and keep lock;

UN Unlock;

FL File lock;

FR File write lock;

AS Assign file;

RV Reserve file;

RE Release file;

CG Change file;

LF List file.

In all cases, FCSS will execute synchronous I/O (FCDONE option).

The status-variable must be a defined numeric variable. It will contain the status at the

completion of the command.

Count is used to specify the number of words to read or write; or the number of files or

blocks in a MOVE or SPACE function. Count must be 0 for REWIND and WRITEEOF

functions. The count may be entered as either a positive numeric integer literal or a

numeric variable.

Sector-address applies to EXEC and TIP/DMS files, and is required on mass-storage READ

and WRITE functions. It may be entered as either a positive numeric integer literal or a

numeric variable.

Record-number applies only to FCSS files, and is required on READ and WRITE functions. It

may be entered as either a positive numeric integer literal or a numeric variable.

Upon return from the DIO command, the I/O status will be put into the status-variable. For

EXEC and TIP/DMS Read and Write functions, the final word count will be put into the

reserved variable REC$LEN. These values will be displayed to the user when executing in

conversational mode.

Examples:

EXEC Direct I/O:

. Define tape and mass-storage files for Direct I/O.

DEFINE F TAPEIN DIO 2000

DEFINE F DISKFILE DIO 2000

...

 DIO TAPEIN MOVE+ X 1 . Move forward past

 . one file.

 IF X NOT = 0 . Check I/O status.

 DISPLAY 'I/O ERROR'

 ENDIF

 DIO TAPEIN READ X 2000 . Read 2000 words.

...

 DIO DISKFILE READ X 1000,64 . Read 1000 words at

 . sector 64.

Direct I/O Access I-QU PLUS-1 Programmer Reference

13-4 KMSYS Worldwide, Inc.

TIP/FCSS Direct I/O:

. Define a TIP/FCSS file.

DEFINE F TIP#121 DIO 31

...

 DIO TIP#121 RL TIPSTAT 28,1 . Read record number 1

 IF TIPSTAT < 0 . FCSS error?

 GO TIP-ERROR

 ENDIF

 DISPLAY RDA (13,4) UB9 . Display 1st word of

 . record (positions

 . 1 thru 12 are the

 . 3 status words).

 SET RDA (13,4) UB9 = 0 . Set 1st word of

 . record to zero.

 DIO TIP#121 WW TIPSTAT 28,1 . Write record back.

 IF TIPSTAT < 0 . Check for FCSS error

 . again ...

I-QU PLUS-1 Programmer Reference RDMS 2200 Interface

14-1 KMSYS Worldwide, Inc.

Chapter 14: RDMS 2200 Interface

The I-QU PLUS-1 commands, RDMS and RDMS+, provide the interface to RDMS 2200

databases. The commands are used in a similar fashion to the following COBOL commands:

ENTER MASM 'ACOB$DMR' ...

ENTER MASM 'RSA$PARAM' ...

The RDMS+ command is conceptually similar to ‘RSA$PARAM’, but must immediately follow

the preceding RDMS (or RDMS+) command (not even a label is allowed in between). Also,

the RDMS call must always pass the first three parameters. As many additional parameters

as desired can be passed on the RDMS call subject to the following limitations: a maximum

of 110 fields can appear in any I-QU PLUS-1 command including a maximum of 70

alphabetic words or names (“RDA RDA-reference” counts as two), 30 numeric literals and

10 quoted string literals. If more fields are required, the RDMS+ command can be used.

Refer to the Enterprise Relational Database Server for ClearPath OS 2200 SQL Programming

Reference Manual, 7830 8160, for a complete discussion of available RDML commands.

RDMS 2200 Interface I-QU PLUS-1 Programmer Reference

14-2 KMSYS Worldwide, Inc.

14.1 The RDMS Command

The RDMS command provides the necessary RDMS 2200 interface information to access

RDMS 2200 databases. This information is comprised of an RDML or SQL formatted

command, RDML error status variables and application program variables. These variables

may be RDA references or reserved/user variables. In certain cases, references to $PBUFF

may be used as well as numeric and non-numeric literals.

Format:

RDMS RDML/SQL-command error-status auxiliary-information ;

 [program-variable-1 [,,, program-variable-n]]

Where RDML/SQL-command can be any, valid RDML command stated in one of the following

ways:

{'command-literal ' | $PBUFF | RDA RDA-reference | variable}

Note: Refer to the Relational Database Server for ClearPath OS 2200 SQL Programming

Reference Manual (7830 8160), for a complete discussion of available RDML commands.

Where error-status may be one of the following ASCII alphabetic references, 4 characters in

length:

{RDA RDA-reference | alpha-variable}

Where auxiliary-information may be one of the following binary numeric references:

{RDA RDA-reference | numeric-variable}

If the “RDA RDA-reference” is used, the item must be defined as UB9, SB9 or COMP.

Where program-variable-1 through program-variable-n can be stated in one of the following

ways:

{RDA RDA-reference | variable | numeric-literal | 'alpha-literal ' | $PBUFF}

Any non-result parameter on the RDMS call can be a quoted string literal. I-QU PLUS-1

allows a maximum of 10 string literals on a single command. For purposes of this check,

RDMS and RDMS+ are separate commands; i.e., there may be up to 10 string literals on

each occurrence of the RDMS and RDMS+ commands (see The RDMS+ in the next section).

Examples:

RDMS 'BEGIN THREAD FOR APPLICATION UDSSRC UPDATE ;' ;

 RDMS-STAT RDMS-AUX

RDMS 'END THREAD ;' RDMS-STAT RDMS-AUX

Notice the use of the semicolons in the above example. The semicolon within the quoted

string is a part of the RDML syntax and denotes the end of the command. The second

semicolon (outside the literal) is standard I-QU PLUS-1 notation. In this example, it is

preceded by a space and it tells I-QU PLUS-1 that the command is continued on the next

line.

The semicolon can also be used to continue lengthy alphabetic literals as shown in the

following example. Here, the semicolon is placed immediately after (no space) the second

single quote on the first line. The semicolon used in this manner tells I-QU PLUS-1 that the

literal is continued on the next line. The second and third lines use command continuation

as explained above.

RDMS 'GET DESCRIPTION INTO ';

 '$P1, $P2, $P3, $P4, $P5, $P6, $P7, $P8, $P9;' ;

 RDMS-STAT RDMS-AUX ;

 QUAL TAB VERS COL TYPE LEN DEC NULL KEY

I-QU PLUS-1 Programmer Reference RDMS 2200 Interface

14-3 KMSYS Worldwide, Inc.

The RDMS command allows the use of the $PBUFF special name for any non-result

parameter. Thus, you can build long commands (or data items) for RDMS by:

DISPLAY ' (long command or data, part 1) ' +

DISPLAY ' (long command or data, part 2) ' +

DISPLAY ' (long command or data, part 3) ' +

...

RDMS $PBUFF status-var aux-info-var ...

As with other uses of $PBUFF, the print buffer is cleared once the call to RDMS is performed.

$PBUFF could appear multiple times in the command but that only makes sense if the SAME

data needs to be supplied multiple times since the data passed would be the same for each

occurrence.

Further examples:

D 'DECLARE LST CURSOR SELECT * FROM ' +

TD TABLE +

D ' WITH DESCRIPTION ;' +

RDMS $PBUFF RDMS-STAT RDMS-AUX

D 'GET DESCRIPTION INTO ' +

D '$P1, $P2, $P3, $P4, $P5, $P6, $P7, $P8, $P9;' +

RDMS $PBUFF RDMS-STAT RDMS-AUX ;

 QUAL TAB VERS COL TYPE LEN DEC NULL KEY

RDMS 2200 Interface I-QU PLUS-1 Programmer Reference

14-4 KMSYS Worldwide, Inc.

14.2 The RDMS+ Command

A maximum of 110 fields can appear in any I-QU PLUS-1 command including a maximum of

70 alphabetic words or names (“RDA RDA-reference” counts as two), 30 numeric literals

and 10 quoted string literals. If an RDMS command requires more parameters than can be

parsed on a single command (or if you just don’t like long, continued commands ‘ ;’) the

RDMS+ command can be used to extend the number of parameters supplied for the RDMS

call. The RDMS+ command must immediately follow the preceding RDMS (or RDMS+)

command (not even a label is allowed in between).

The first three parameters for the RDMS call must be supplied on the RDMS call itself. The

fourth and subsequent parameters can be supplied via the RDMS+ command. The RDMS+

command may not be used in conversational mode (the previous RDMS command would

have already been completely processed and executed before you could enter the RDMS+

command).

Format:

RDMS+ program-variable-1 [… program-variable-n]

Where program-variable-1 through program-variable-n can be stated in one of the following

ways:

{RDA RDA-reference | variable | numeric-literal | 'alpha-literal ' | $PBUFF}

Examples:

D 'FETCH NEXT CUST_CURSOR INTO $P1,' +

D '$P2,$P3,$P4,$P5,$P6,$P7,$P8,$P9,$P10,$P11' +

RDMS $PBUFF STAT-VAR AUX-INFO

RDMS+ RDA CUST_KEY RDA CUST_LAST_NAME

RDMS+ RDA CUST_FIRST_NAME RDA CUST_MI ADDR1 ADDR2

RDMS+ RDA ADDR3 RDA ADDR4 RDA CITY RDA STATE

RDMS+ RDA ZIP

I-QU PLUS-1 Programmer Reference RDMS 2200 Interface

14-5 KMSYS Worldwide, Inc.

14.3 Automated RDA Definitions

Several RDML commands afford the ability to reference many program variables (column

names). As shown in the previous example, these program variables may be RDA

references. With this release of I-QU PLUS-1, an I-QU PLUS-1 program is provided to

facilitate and automate the definition of these RDA references. The seventh file (Q6) of the

release tape contains a source element called RDMS-PICS. After I-QU PLUS-1 installation,

this element can normally be found in SYSLIB*IQU-1.

RDMS-PICS retrieves the column names from an RDMS table and creates COBOL 02-level

definitions suitable for input to the QINDEX processor. The QINDEX utility can then be used

to create a data item index file that can be referenced by the I-QU PLUS-1 INDEX directive.

In addition to the COBOL 02-level definitions generated, RDMS-PICS generates a QINDEX

FILE directive and a COBOL 01-level definition for each RDMS table chosen. The RDMS

table name is used for the file name on the FILE directive and the 01-level data name.

RDMS column names become the data names on the 02-level statements.

The QINDEX FILE directive generated allows an I-QU PLUS-1 program to use a pseudo

DEFINE F directive for each table and thus, take advantage of alternate record area

processing (DEFINE RA) as with PCIOS files. For example, assume an I-QU PLUS-1 program

included the following definition of a PCIOS file, PAYMAST, and the pseudo definition for an

RDMS 2200 table, PAY-RATE-TAB:

DEFINE F PAYMAST SEQ 120,0 . PCIOS file

DEFINE F PAY-RATE-TAB SEQ 42,0 . Pseudo define for

 . RDMS Table

DEFINE RA PAY-RATE-TAB AFTER PAYMAST

The column values of PAY-RATE-TAB will occupy a different part of the RDA than the data

item values of the file PAYMAST. The QINDEX FILE directive generated also makes it

possible to reference column names without having to qualify a reference with the pseudo

DEFINE F file name. However, since file names are restricted to 12 characters (table names

can have as many as 30 characters), shorten the FILE directive file name to 12 or less

characters prior to executing QINDEX. Decreasing the file name to 12 or fewer characters is

only necessary if you plan to use the pseudo DEFINE F.

The file cataloged and created by RDMS-PICS is QKMS*RDMSFILES.

The following is the source listing of RDMS-PICS:

. Create data item QINDEX input from RDMS 2200 column names

INPUT

INIT

LISTOFF

. RDMS VARS

DEF A APPLICATION 30 . Solicited from user to BEGIN

DEF A QUALIFIER 30 . THREAD and USE appripriate

DEF A VERSION 30 . QUALIFIER.TABLE:VERSION

DEF A TABLE 30 . (QUALIFIER = schema).

DEF A RDMS-STAT4'' . Error number from RDMS

DEF N RDMS-AUX 0 . Column if syntax error

DEF A ERROR-MSG 132 . Long message

DEF A PREVTAB 30 . Hold table for FILE and 01 gen

. RDMS $P1 -$P9 . Values returned from GET DESC

DEF A QUAL 30 . Not used

DEF A TAB 30 . Used to gen FILE and 01 name

DEF A VERS 30 . Not used

RDMS 2200 Interface I-QU PLUS-1 Programmer Reference

14-6 KMSYS Worldwide, Inc.

DEF A COL 30 . Used to gen data name

DEF A TYPE 14 . Not used

DEF N LEN . Used to gen PIC clause

DEF N DEC . Used to gen V dec positions

DEF N NULL . Not used

DEF N KEY . Not used

.

. Solicit user input -QUIT on any query will terminate program

 ACCEPT APPLICATION 'ENTER APPLICATION (<UDSSRC>/application_name): '

 IF APPLICATION = $SPACES

 APPLICATION = 'UDSSRC' . UDS default application name

 ELSE

 SHIFT APPLICATION TO UPPER

 IF APPLICATION = 'QUIT'

 GO QUITIT

 ENDIF

 ENDIF

 DO UNTIL QUALIFIER <> $SPACES

 ACCEPT QUALIFIER 'ENTER TABLE QUALIFIER (qualifier_name/';

 'schema_name): '

 IF QUALIFIER = $SPACES

 D '*** QUALIFER MUST BE NON-BLANK ***'

 ELSE

 SHIFT QUALIFIER TO UPPER

 IF QUALIFIER = 'QUIT' . No default schema/qualifier

 GO QUITIT

 ENDIF

 ENDIF

 ENDDO

 ACCEPT VERSION 'ENTER TABLE VERSION (<PRODUCTION>/version_name): '

 IF VERSION = $SPACES

 VERSION = 'PRODUCTION' . DDS default version name

 ELSE

 SHIFT VERSION TO UPPER

 IF VERSION = 'QUIT'

 GO QUITIT

 ENDIF

 ENDIF

.

. BEGIN THREAD in RETRIEVE mode and set DEFAULTs

.

 TD 'BEGIN THREAD FOR APPLICATION ' APPLICATION ' RETRIEVE ;' +

 RDMS $PBUFF RDMS-STAT RDMS-AUX

 DO ERRCHK

 TD 'USE DEFAULT QUALIFIER ' QUALIFIER ' ;' +

 RDMS $PBUFF RDMS-STAT RDMS-AUX

 DO ERRCHK

 TD 'USE DEFAULT VERSION ' VERSION ' ;' +

 RDMS $PBUFF RDMS-STAT RDMS-AUX

 DO ERRCHK

 DO . Do until AT END or BREAK

 ACCEPT TABLE 'ENTER TABLE (Table_name/QUIT): ' AT END BREAK

 SHIFT TABLE TO UPPER

I-QU PLUS-1 Programmer Reference RDMS 2200 Interface

14-7 KMSYS Worldwide, Inc.

 IF TABLE = $SPACES

 OR TABLE = 'QUIT'

 BREAK

 ENDIF

 PC BRKPT 'QKMS*RDMSFILES' . Will be input to QINDEX

 DO TABLE

 PC LOCAL . Reset temporarly for next ACC

 ENDDO . - will append to BRKPT file

 GO FINALE

TABLE PROCEDURE

 TD 'DECLARE LST CURSOR SELECT * FROM ' TABLE ' WITH DESCRIPTION ;' +

 RDMS $PBUFF RDMS-STAT RDMS-AUX

 DO ERRCHK

 DO

 RDMS 'GET DESCRIPTION INTO ';

 '$P1, $P2, $P3, $P4, $P5, $P6, $P7, $P8, $P9 ;' ;

 RDMS-STAT RDMS-AUX ;

 QUAL TAB VERS COL TYPE LEN DEC NULL KEY

 IF RDMS-STAT = '6001' . End of column names in table

 BREAK

 ENDIF

 DO WHILE TAB <> PREVTAB . Gen FILE and 01 name 1 time

 TD 'FILE ' TAB . per table

 TD 8 '01 ' TAB '.'

 PREVTAB = TAB . Hold current table name

 ENDDO

 SHIFT TYPE TO UPPER

 IF TYPE = 'NCHAR' . 16-bit char set not supported

 GO NEXT-COLUMN

 ENDIF

 D 12 '02 '+

 D 16 COL + . Data name = column name

 IF TYPE = 'REAL'

 OR TYPE = 'FLOAT'

 OR TYPE = 'DOUBLE'

 D 47 ' COMP-2.'

 ELSE

 D 47 'PIC '+

 IF TYPE = 'DECIMAL'

 OR TYPE = 'NUMERIC'

 OR TYPE = 'DATE'

 OR TYPE = 'TIME'

 OR TYPE = 'TIMESTAMP'

 D 52 'S9(' + . All decimal fields are signed

 IF DEC = 0

 TD LEN ') COMP.'

 ELSE

 LEN = LEN - DEC

 TD LEN ')V9(' DEC ') COMP.'

 ENDIF

 else

RDMS 2200 Interface I-QU PLUS-1 Programmer Reference

14-8 KMSYS Worldwide, Inc.

 if type = 'INTEGER'

 or type = 'SMALLINT'

 d 52 'S9(10) COMP.'

 else

 TD 52 'X(' LEN ').' . CHARACTER/NCHARACTER

 endif

 ENDIF

 ENDIF

NEXT-COLUMN

 ENDDO

 RDMS 'DROP CURSOR LST;' RDMS-STAT RDMS-AUX

 DO ERRCHK

 ENDPROC

FINALE

 RDMS 'COMMIT WORK ;' RDMS-STAT RDMS-AUX

 DO ERRCHK

 RDMS 'END THREAD ;' RDMS-STAT RDMS-AUX

 DO ERRCHK

QUITIT

 STOP EXIT

ERRCHK PROCEDURE

 IF RDMS-STAT <> '0000'

 PC LOCAL

 D 'RDMS ERROR STATUS:' +

 D RDMS-STAT +

 D ' RDMS AUX INFO:' +

 D RDMS-AUX

 DO UNTIL ERROR-MSG = $SPACES

 RDMS 'GETERROR INTO $P1 ;' ;

 RDMS-STAT RDMS-AUX ERROR-MSG

 D '<ERRMSG>' +

 D ERROR-MSG

 ENDDO

 STOP EXIT

 ENDIF

 ENDPROC

The program can be run as a batch or interactive job utilizing the IQU processor as the

following example illustrates:

@IQU,I

IQU IQU11R6 (Release 11R6) (961114 1146:10) ...

Copyright 1986-1999 by KMSYS Worldwide, Inc. – All Rights ...

Initial Mode is INPUT

ADD RDMS-PICS FROM SYSLIB*IQU-1

ENTER APPLICATION (<UDSSRC>/application_name): 

ENTER TABLE QUALIFIER (qualifier_name/schema_name): DEMOSCHEMA

ENTER TABLE VERSION (<PRODUCTION>/version_name): 

ENTER TABLE (Table_name/QUIT): CUST_KEY_TAB

ENTER TABLE (Table_name/QUIT): CUST_ADDR_TAB

ENTER TABLE (Table_name/QUIT): QUIT

@CAT,P CUSTINDEX.

@QINDEX,I CUSTINDEX.

@ADD QKMS*RDMSFILES.

I-QU PLUS-1 Programmer Reference RDMS 2200 Interface

14-9 KMSYS Worldwide, Inc.

The interactive session above uses the RDMS 2200 default application name (UDSSRC) and

the DDS 2200 default version (PRODUCTION) by simply transmitting a blank line.

The output from RDMS-PICS for the above example would appear as follows:

FILE CUST_KEY_TAB

 01 CUST_KEY_TAB.

 02 CUST_KEY PIC X(9).

 02 NAME PIC X(33).

 02 CHG_TIME PIC S9(9).

FILE CUST_ADDR_TAB

 01 CUST_ADDR_TAB.

 02 STATE PIC X(2).

 02 CITY PIC X(18).

 02 ACCOUNT PIC X(9).

 02 CUSTNAME PIC X(33).

 02 ADDR1 PIC X(30).

 02 ADDR2 PIC X(30).

 02 ADDR3 PIC X(30).

 02 ZIP PIC X(9).

 02 AREACODE PIC X(3).

 02 EXCHANGE PIC X(3).

 02 TELNUM PIC X(4).

The RDA references available by using the INDEX directive in an I-QU PLUS-1 program

would be:

CUST_KEY_TAB (00001,00051)

CUST_KEY (00001,00009)

NAME (00010,00033)

CHG_TIME (00043,00009) SN9

CUST_ADDR_TAB (00001,00171)

STATE (00001,00002)

CITY (00003,00018)

ACCOUNT (00021,00009)

CUSTNAME (00030,00033)

ADDR1 (00063,00030)

ADDR2 (00093,00030)

ADDR3 (00123,00030)

ZIP (00153,00009)

AREACODE (00162,00003)

EXCHANGE (00165,00003)

TELNUM (00168,00004)

I-QU PLUS-1 Programmer Reference BIS DTM Interface

15-1 KMSYS Worldwide, Inc.

Chapter 15: BIS DTM Interface

I-QU PLUS-1 programs can interface with BIS’s Data Transfer Module (DTM). Two

I-QU PLUS-1 directives and four commands are provided to handle requests through BIS

queues: the DEFINE F and DEFINE RA directives; and the OPEN, CLOSE, READ and WRITE

commands.

For a complete example using the BIS DTM interface, see the I-QU PLUS-1 Application

Development User Guide.

15.1 Queue-alias Definition (DEFINE F)

Before BIS data can be referenced, a queue-alias must be defined with the DEFINE F

directive. A queue-alias can be looked at as an internal file name to be associated with a

particular BIS RID. Lines of data can be read from or written to this RID via a BIS queue

name (configured with a BIS system through the DTM configuration report). Since it is

possible to be accessing more than one RID simultaneously through the same BIS queue,

I-QU PLUS-1 requires that a separate queue-alias be defined for each of these opened

reports.

Queue-alias files may be opened, referenced and closed as necessary. All Queue-alias file

and database input and output is done through the RDA. If multiple records are to be read

and compared, the user may set up alternate record areas using the DEFINE RA directive,

or move necessary data items to a defined variable storage location.

Format:

DEFINE F queue-alias MAPPER [maximum-transfer-size ;

 parameter-block [{IN | OF} filename]

DEFINE may be abbreviated DEF.

The maximum-transfer-size may be between 8 and 256 characters. The default is 132

characters.

Note that the DEFINE FF format (available for PCIOS files) is NOT supported since the DTM

interface only supports ASCII (FCS) transfers.

The queue-alias is used on the OPEN, READ, WRITE and CLOSE commands to refer to the

specific BIS OPEN-queue-alias/parameter-block combination. The queue-alias is a logical

name and does not convey the actual destination queue name. The use of the queue-alias

allows the I-QU PLUS-1 program to have several queue-aliases open concurrently to the

same BIS queue name. The actual destination queue name is passed as a field in the

parameter-block.

The parameter-block contains fields necessary to affect data transfer with the DTM. It must

be defined prior to any queue-alias DEFINE F directive. The format of the parameter-block

is as follows:

.

BIS DTM Interface I-QU PLUS-1 Programmer Reference

15-2 KMSYS Worldwide, Inc.

. DTM interface parameter block for I-QU PLUS-1

.

def rda param-block (*,168)

def rda pb-dest-queue (param-block,12) A9

def rda pb-userid (*,12) A9

def rda pb-dept (*,4) UN9

def rda pb-password (*,6) A9

def rda pb-filler1 (*,2)

def rda pb-mode (*,12) A9

def rda pb-type (*,1) A9

def rda pb-filler2 (*,3)

def rda pb-rid (*,4) A9

def rda pb-start-line (*,4) UN9

def rda pb-xfer-lines (*,4) UN9

def rda pb-run-name (*,12) A9

def rda pb-status (*,1) UB9

def rda pb-filler3 (*,3)

def rda pb-err-code (*,8) A9

def rda p--b-err-message (*,80) A9

. 168 character positions total

.

This data structure is defined in the element DTM-PARM-BLK in the file, SYSLIB*IQUx-1,

and can be copied directly into an I-QU PLUS-1 program using the ADD directive. Consult

the person responsible for installing I-QU PLUS-1 in order to determine the actual file name

of this file on your system.

The parameter-block may be qualified by a filename previously defined on a DEFINE F

directive.

The parameter-block specifications are established by KMSYS Worldwide software

development and as such are subject to change from release level to release level. For

this reason, KMSYS Worldwide highly recommends that the definition for the parameter-

block be copied from the file, SYSLIB*IQUx-1, rather than hard coding it in an

I-QU PLUS-1 program.

The fields PB-DEST-QUEUE through PB-RUN-NAME must be filled in by the I-QU PLUS-1

program before opening the queue-alias file. These parameter values, under similar but

different COBOL names, are described in the Unisys Business Information Server for 2200

SCHDLR Interface Programming Reference Manual, 7832 1122, with the exception of the

PB-START-LINE and PB-XFER-LINES fields, which are described below.

The PB-FILLERx fields are for structure alignment and must be present. The PB-STATUS,

PB-ERR-CODE and PB-ERR-MESSAGE fields are returned following any DTM related

I-QU PLUS-1 command and must be tested by the I-QU PLUS-1 program to determine the

success of the operation. This is different from the I-QU PLUS-1 PCIOS implementation

where any error other than end of file or invalid key is fatal to the program.

KMSYS Worldwide supplies a BIS run under the default name of IQU$DTM in the file,

SYSLIB*IQUx. It is in non-BIS format without headers and should be retrieved into BIS

and registered by the BIS Coordinator. This run can be restricted by BIS mode and/or user-

id at the discretion of the BIS Coordinator.

I-QU PLUS-1 Programmer Reference BIS DTM Interface

15-3 KMSYS Worldwide, Inc.

15.2 Alternate Queue-alias Areas (DEFINE RA)

The DEFINE RA directive for DTM performs similarly to its PCIOS implementation. Note that

it defines an alternate record source/delivery area, which MUST be at least 256 characters

(132 for BIS level 34 and earlier) in length for input operations regardless of the actual

width of the BIS report being retrieved. This directive does not affect the location of the

param-block referenced on the DEFINE F directive.

Format:

DEFINE RA {filename | record-name | queue-alias | SORT} ;

 {absolute-word-number | ;

 {OVERLAY | AFTER} {filename | record-name | queue-alias | SORT}

DEFINE may be abbreviated DEF.

BIS DTM Interface I-QU PLUS-1 Programmer Reference

15-4 KMSYS Worldwide, Inc.

15.3 CLOSE

The CLOSE command is similar to its PCIOS equivalents in that it releases any pending

buffers, requests SCHDLR/BIS to complete the request and returns the completion status to

the I-QU PLUS-1 program. This command will be performed implicitly if an INIT directive is

entered or if I-QU PLUS-1 is about to terminate normally.

Format:

CLOSE queue-alias

CLOSE may be abbreviated CL.

I-QU PLUS-1 Programmer Reference BIS DTM Interface

15-5 KMSYS Worldwide, Inc.

15.4 OPEN

Currently BIS reports can be retrieved (INPUT) or created/replaced (OUTPUT). Other access

modes are not currently supported. A partial report can be retrieved by setting the PB-

START-LINE and PB-XFER-LINES fields in the parameter block BEFORE opening the queue-

alias file. These parameters are not used when opening for OUTPUT. Other access modes

(particularly APPEND) may be supported in future I-QU PLUS-1 releases. Note that the

DTM/MTQ interface in BIS limits the size of messages, which may be passed to 113,000

words (approximately 5100 80-character or 3000 132-character ASCII [FCS] lines). Thus,

reports written to BIS that exceed this limitation must be written into multiple RIDs and

combined within BIS. Larger reports can be conveniently retrieved from BIS into an

I-QU PLUS-1 program by opening the queue-alias multiple times using different line range

specifications. The default BIS run supports referencing reports either by name or by mode

number. If the RID number is supplied as zero on an OPEN for OUTPUT, the next available

RID number will be used and the report actually created (by the AR [Add Report] function

will be returned in the parameter block following the CLOSE command.

Format:

OPEN queue-alias {INPUT | OUTPUT} SEQ

INPUT may also be abbreviated INP.

BIS DTM Interface I-QU PLUS-1 Programmer Reference

15-6 KMSYS Worldwide, Inc.

15.5 READ

The READ command performs similarly to the PCIOS equivalent for sequential input files.

The data is transferred to the record delivery area (its location is either position one of the

RDA or as was modified by the DEFINE RA directive). The REC$LEN reserved I-QU PLUS-1

variable is set with the actual number of significant characters in the record (from zero to

256). Note that 256 characters (132 for BIS level 34 and earlier) is always delivered to the

record delivery area, even if the significant data is shorter. Short records are padded with

ASCII spaces.

Format:

READ queue-alias [AT END {program-label | BREAK}]

I-QU PLUS-1 Programmer Reference BIS DTM Interface

15-7 KMSYS Worldwide, Inc.

15.6 WRITE

This command performs similarly to the PCIOS equivalent for sequential output files. The

data is transferred from the record delivery area (its location is either position one of the

RDA or as was modified by the DEFINE RA directive). The length transferred is either as

specified on the WRITE command or is 256 characters (132 for BIS level 34 and earlier) if

omitted.

Format:

WRITE queue-alias [length]

WRITE may be abbreviated W.

I-QU PLUS-1 Programmer Reference Command and Keyword Abbreviations

16-1 KMSYS Worldwide, Inc.

Chapter 16: Command and Keyword Abbreviations

The following is a list showing the minimum number of characters required for keywords

and commands. Also shown are accepted abbreviations and mnemonics:

ACCEPT = A

ACQUIRE = ACQ

ADD=AD
APPLICATION = APPL
AREA = A
BITMERGE = BITM or BM
BITSPLIT = BITS or BS
BREAK = B
BRKPT = B

CALSIM = CA
CDELETE = CD
CHARACTERS = CHARS
CLEAR = CLE
CLEARSCREEN = CLS or
 CLEARS

CLOSE = CL

COMPILE = C
CONNECT = CONN
CONSOLE = CONS or
 CONSOL
CONV = CON
CSF=CS

CURRENT = CURR
DATE = DA
DBERROR = ERROR
DECIMAL = DEC
DEFINE = DEF
DELETE = DEL
DEPART = DEP

DISCONNECT = DIS
DISPLAY = D
DUMP = DU

DUPLICATE = DUP
ECHO = EC
EDIT = ED

EJECT = E
ELSE = EL
ENDDO = ENDD
ENDIF = ENDI
ENDPROC = ENDP
EXCLUSIVE = EX

EXIT = EXI

FACERR = FA or FE

FETCH1 = F1
FETCH2 = F2
FETCH3 = F3
FETCH4 = F4
FETCH5 = F5
FETCH6 = F6
FETCH7 = F7

FIND1 = FN1
FIND2 = FN2
FIND3 = FN3
FIND4 = FN4
FIND5 = FN5
FIND6 = FN6

FIND7 = FN7

FIRST = F
FREE = FR
GETPTR = GETP
GREGORIAN = G
IMPART = IMP
INDEX = IND

INIT = INI
INPUT = INP or I
INSERT = INS
INSPTR = INSP
INVOKE = INV
JULIAN = J
KEEP = K

LAST = L
LISTOFF = LISTOF
LOAD = L

LOCAL = L
MODIFY = M
NEXT = N

NULPTR = NULP
OBJECT = OB
OPEN = O
OPTION = OPT
OUTPUT = O
OWNER = O

PCONTROL = PC

PRINTER = PR

PRIOR = P
PROCEDURE = PRO
PUTPTR = PUTP
READNEXT = READN
RECORDS = RECS or
 RECORD
RELEASE = REL

REMOVE = REM
REMPTR = REMP
RETRIEVAL = RET
RETURN = RETU
REWRITE = REW
ROUND = ROU

RSTPTR = RSTP

RUN=R
SAVE = SA
SCAN = SC
SET=S
SETPTR = SETP
SHIFT = SHI

SORT = SOR
START = ST
STORE = STOR or STR
SUPPRESS = SUP
SWGET = SWG
SWSET = SWS
TABS = TA

TIME = TI
TRACE = TRA
TRANSFER = TRANS

TRIMDISP = TD or TRIMD
TRIMEDIT = TE, TED or
TRIME

UPDATE = U
WILDCARD = WI
WRITE = W
XREF = XR
XTRPTR = XTRP

Table 16-1: Keyword Abbreviations

I-QU PLUS-1 Programmer Reference DBDUMP File Description

17-1 KMSYS Worldwide, Inc.

Chapter 17: DBDUMP File Description

The following is a COBOL description of I-QU PLUS-1’s DBDUMP formatted file. This file

format may be input to any other COBOL program, or created by a COBOL program, as long

as it is specified as follows:

The SELECT statement:

SELECT DBFILE ASSIGN TO DISC *

* File may be externally assigned to tape.

The FD:

FD DBFILE

LABEL RECORDS ARE STANDARD

BLOCK CONTAINS 2 RECORDS.

01 DUMP-RECORD.

 05 FIXED.

 10 RECORD-NAME PIC X(32).

 10 NUMBER-CTL-WORDS PIC 9(10) COMP.

 10 CONTROL-WORDS-POS PIC 9(10) COMP.

 10 NUMBER-DATA-WORDS PIC 9(10) COMP.

 10 TOTAL-WORDS PIC 9(10) COMP.

 05 VARIABLE-LENGTH-DATA.

 10 DATA-WORDS OCCURS 1 TO max-rec-length

 DEPENDING ON TOTAL-WORDS.

 15 DATA-WORD PIC X(4).

Field Description:

The max-rec-length may not exceed the length of the RDA generated for the version

of I-QU PLUS-1 that will read the file.

RECORD-NAME will be moved to the reserved variable C-O-T after each record is

read by I-QU PLUS-1. I-QU PLUS-1 program logic may then be based on the

contents of this field.

NUMBER-CTL-WORDS must contain the number of words in the control segment of

the record. If the control segment is present, it will start in the first occurrence of

DATA-WORD. If no control segment is present, this field must be zero.

CONTROL-WORDS-POS must contain the word position with I-QU PLUS-1’s RDA into

which the control segment will be placed. If NUMBER-CTL-WORDS is zero, this item

must also be zero.

NUMBER-DATA-WORDS must contain the total number of data words contained in

the record. Data words will immediately follow the control segment, if one is

present, or will begin in the first occurrence of DATA-WORD.

DBDUMP File Description I-QU PLUS-1 Programmer Reference

17-2 KMSYS Worldwide, Inc.

TOTAL-WORDS must contain the total number of control and data words in the

record. This field must equal the sum of NUMBER-CTL-WORDS plus NUMBER-DATA-

WORDS.

I-QU PLUS-1 Programmer Reference QINDEX Reference

18-1 KMSYS Worldwide, Inc.

Chapter 18: QINDEX Reference

QINDEX is a processor used to create a data item index file of data item definitions.

QINDEX is executed in demand mode and is installed on your system when I-QU PLUS-1 is

installed. This chapter describes the purpose and rules for using the QINDEX processor.

18.1 Introduction

The data item index file is used by the I-QU PLUS-1 processor to obtain the location and

format of data items in the record delivery area (RDA) automatically. I-QU PLUS-1

automatically creates a primary data item index file on start-up. When an INVOKE directive

is processed, information related to DMS 2200 areas, records, sets and database

datanames, and information related to data items (fields within records) is added to the

primary index. This information is used in editing and encoding DMS 2200 DML commands,

and in the resolution of RDA names used within various commands and directives. Data

item definitions in the primary data item index are obtained directly from the object schema

and subschema.

Data redefinitions coded in the subschema are not available via the INVOKE process,

because they are not included in the object subschema. They are only present in the

S$PROC element created by the SDDL and copied into user programs by the ADMLP

processor. To make redefinitions available to I-QU PLUS-1, a secondary data item index

may be created using QINDEX.

When a data item name is used in an I-QU PLUS-1 command or directive, the processor will

first search its internal data definition table for the item name. Then, if the user has not

defined the item (DEFINE RDA), the search will continue to the primary data item index for

the correct definition. If the name is not found in the primary index, the secondary index, if

present, is searched. The search of either index file will also match the record qualifier, if

one was used. If the item name appears in more than one record and no record

qualification is used, the first matching definition will be used.

The search order used in resolving a data item name is as follows:

1. Current DEFINE RDA names (always overrides data item index);

2. The primary data item index;

3. The secondary data item index.

A major use of the QINDEX processor is to create a single definition for all data within an

entire application. The definition may be composed from a DMS 2200 subschema and

schema plus any number of non-DMS 2200 file definitions. Non-DMS 2200 files may include

any file types supported by the I-QU PLUS-1 processor.

QINDEX Reference I-QU PLUS-1 Programmer Reference

18-2 KMSYS Worldwide, Inc.

18.2 QINDEX, General Information

The QINDEX processor is designed to create compatible data item index files from object

schemas and subschemas, and standard COBOL definitions for use in the I-QU PLUS-1

processor. The data item index file created by QINDEX may be invoked by the I-QU PLUS-1

processor by using the INDEX directive (see the I-QU PLUS-1 Programmer Reference).

18.2.1 Input to QINDEX

The input to QINDEX consists of several directives, COBOL data definitions and optionally,

an object schema and subschema. COBOL data definitions from many elements may be

processed at one time (the processor call may be followed by many @ADD statements). No

limit exists to the number of items that can be included in the data item index file. COBOL

data definitions are input in standard COBOL source image format. The following

restrictions apply:

 QINDEX will assume that the COBOL source input has been processed through the

COBOL compiler at some point, and therefore will perform no COBOL syntax

checking.

 Each 01 level definition from the source input will begin a new record definition. The

generated RDA position pointer will be reset to character position one. The first data

item image input to the QINDEX Processor must be an 01 level.

 Input images may contain comments, COBOL PROC headings and END statements.

These will be ignored by the QINDEX processor.

 QINDEX will ignore all 66, 77 and 88 level items. FILLER items will be used to

determine data item positions, and will not be output to the data item index file.

Any VALUE clauses encountered will also be ignored.

 Input must not contain mixed FIELDATA and ASCII definitions. Allocation is based

on the processor option settings. QINDEX will not make a distinction between

DISPLAY and DISPLAY-1 or COMP and COMP-4. QINDEX will not support or

recognize FIELDATA binary alignment (for example, PIC H99999).

 QINDEX supports UCOB data types of BINARY and BINARY-1. Also, both ACOB and

UCOB S$PROC elements may be input to QINDEX.

 Double-byte characters as specified by the DISPLAY-2 data type are supported for

the Asian character sets.

 On items within an OCCURS clause, QINDEX will generate a definition that refers to

the first item occurrence. References to subsequent occurrences may be made by

using either the RDA Indexing or Subscripting features of the I-QU PLUS-1

Processor.

 QINDEX supports exact binary notation for both DMS 2200 records (INVOKE

directive) and PCIOS files (FILE directive). QINDEX can properly align data items

that are included in record/file definitions (COBOL 01 level) containing exact binary

data items. For example:

PIC 1(36)

PIC 1(5)

PIC 1(1)

This feature is currently supported for field alignment purposes only. A future

release of I-QU PLUS-1 will support access-to-bit definitions.

18.2.2 Output of QINDEX

The final output of QINDEX is an I-QU PLUS-1 compatible secondary data item index file. In

addition to the data item index file, QINDEX may optionally produce a listing of the data

I-QU PLUS-1 Programmer Reference QINDEX Reference

18-3 KMSYS Worldwide, Inc.

item index file’s contents. The listing will show each entry in alphabetical sequence,

grouped by areas, records, sets, database datanames and data items.

18.3 Running QINDEX

QINDEX must be run as a processor (not an @XQT) using the following format:

@IQINDX,options index-file-name

Followed by DIRECTIVES and user-supplied COBOL data definition source images.

The processor call name given to QINDEX (the default name) is determined when QINDEX is

installed. For the correct processor name at your site, consult with the person responsible

for installing QINDEX at your site.

The index-file-name must be the name of an existing mass-storage file that will be used as

the Data Item Index File.

Following the processor call line are the optional QINDEX directives and user-supplied

COBOL source images that will be used in processing the Data Item Index File.

18.3.1 QINDEX Processor Options

Available execution options are:

B Causes the execution of QINDEX to be treated as a batch mode execution.

D Causes the execution of QINDEX to be treated as a demand mode execution.

This option is the converse of the B-Option.

F Option “F” indicates that the definitions being processed are FIELDATA. The

default is ASCII.

I The “I” option will cause the index file to be initialized. Any existing definitions

will be lost. If this option is not present, the index file will be opened for

update. The INVOKE directive may only be used when the I option is used.

L The “L” option will result in the listing of all source input images as they are

read, and will cause the entire data item index file contents to be listed upon

completion of processing of the source input.

N Option “N” is used to produce a list of the contents of the index file with no

update and no directives or source input. If this option is used, all other

options are ignored.

S Option “S” will cause the listing of all source input images as they are read.

T For KMSYS Worldwide debugging only. Use only if directed to by KMSYS

Worldwide’ personnel.

O The “O” option will cause the processor to overwrite any duplicate definitions

encountered. The definition of the last duplicated item name will be used. If

this option is not used, a warning message will be displayed for each duplicated

item name encountered, and the first definition will be used.

W Option “W” causes QINDEX to produce a data item list, replacing the “RDA REF”

portion of the listing with starting word, starting bit and bit length of each item.

The starting word is relative to zero, that is, for the first word in a record/file,

starting word = 00000. The starting bit begins at bit one of the word and

proceeds from left to right. If the “W” option is not specified, the default RDA

reference (starting character, number of characters) will be displayed.

18.3.2 QINDEX Directives

There are several QINDEX directives that control the creation or update of the Data Item

Index File. The following describes the function of each.

QINDEX Reference I-QU PLUS-1 Programmer Reference

18-4 KMSYS Worldwide, Inc.

The QINDEX directives are:

INVOKE

S$PROC

RECORD

FILE

18.3.2.1 INVOKE

The INVOKE directive for QINDEX works in a similar manner to the INVOKE in the

I-QU PLUS-1 processor in that it accesses the object schema and subschema to build the

Data Item Index File. The difference is that no initialization of D$WORK and S$WORK is

involved.

The INVOKE will create a data item index file record for each area, record, set, database

dataname and data item included in the specified subschema. The data item index file will

not include redefinitions of data items in the subschema, because redefinitions are not

included in the subschema or schema object. Redefinitions are only present as source

images in the S$PROC element for the subschema which is copied into COBOL programs by

the ADMLP Processor prior to program compilation (see the S$PROC directive on the

following page).

The INVOKE may only be used when initializing (“I” option) a new Data Item Index file, and

must be the first directive read.

Format:

INVOKE subschema {IN | OF} schema {FILE filename | TIP file-code} ;

 [[KEY] invoke-key]

The filename or file-code must contain both the subschema and schema object elements.

Example:

INVOKE SUB-REQMTS IN MFG-SCHEMA FILE DMS*SCHEMAFILE

18.3.2.2 S$PROC

The purpose of the S$PROC directive is to apply data item redefinitions to an initial Data

Item Index file created by the INVOKE directive. The S$PROC element contains the COBOL

source for the subschema as generated by the SDDL process, including any item redefines

statements. INDEX will match the S$PROC source to the records built by the INVOKE to

apply redefinitions to the appropriate records. The S$PROC directive is optional, and must

immediately follow the INVOKE directive.

Format:

S$PROC [filename]

The filename is optional, and only needs to be specified if the S$PROC element for the

subschema named on the INVOKE is in a different file, or if the INVOKE specified a TIP

schema file. If omitted, QINDEX will used the same file name used in the INVOKE. S$PROC

cannot be processed from a TIP schema file.

18.3.2.3 RECORD

The RECORD directive is used to add additional item definitions to an existing DMS 2200

record. In this manner, a record can be redefined in any way desired beyond any

definitions that exist in either the schema or subschema. This redefinition may be required

if an application uses a generic record definition in the schema with the record defined in

many different formats within various application programs. Definitions added via the

RECORD directive will be tied directly to the specified record. All RECORD directives must

follow the INVOKE and S$PROC directives, if present.

I-QU PLUS-1 Programmer Reference QINDEX Reference

18-5 KMSYS Worldwide, Inc.

Format:

RECORD subschema-record-name

Followed by COBOL description source

The subschema-record-name must currently exist in the data item index file. It is placed in

the data item index file by the INVOKE when the file is initialized.

If the subschema specifies only selected items of the record via an ITEMS ARE clause, care

must be taken to ensure that added definitions match the mapped form of the record. The

mapped form is the form containing only those items included in the ITEMS ARE clause.

Examples:

RECORD PART-MSTR

 01 PART-MSTR.

 *** THE FOLLOWING DEFINES THE FIRST 80 POSITIONS

 *** OF THE PART MASTER RECORD FOR USE AS A

 *** HEADER (THIS IS NOT DEFINED IN THE SCHEMA).

 05 PART-MSTR-HDR PIC X(80).

 05 FILLER PIC X(102).

The above definitions will be applied to the PART-MSTR record defined in the currently

invoked subschema.

18.3.2.4 FILE

The file directive allows the addition of non-DMS 2200 file records. These definitions are not

created by the INVOKE, S$PROC or RECORD directives. When a file definition is included in

a data item index file, the I-QU PLUS-1 processor will be able to address file data items by

name, and automatically determine the RDA location of the record.

When a file is defined in QINDEX, it is assigned an internal file code beginning with 4097.

Each subsequent file is assigned the next higher number. This range is used to distinguish

non-DMS 2200 files from DMS 2200 records (the highest possible record code is 4095).

These codes are used in the I-QU PLUS-1 processor to determine the record's RDA position

automatically when items within records are referenced. In order for this feature to function

correctly in I-QU PLUS-1, the INDEX directive must be processed before all file definitions

(DEFINE Fs).

Format:

FILE filename [IBM]

Followed by COBOL description source

The filename must be the same name used when the file is defined in I-QU PLUS-1 with the

DEFINE F directive.

Example:

FILE PART-HIST

 01 PART-HIST.

 05 PH-PART-NUMBER PIC 9(5).

 05 PH-PART-NAME PIC X(50).

 05 PH-PRICE PIC 9(5)V999.

 05 PH-PRICE-DATE PIC 9(6).

The file definition may contain REDEFINES and additional 01 levels as needed. Once a file

has been defined in this manner, RDA item referencing and automatic record area offset

operate the same as for DMS 2200 records.

QINDEX can be instructed to treat the COBOL PIC clause as if it had been defined for an IBM

360/370 environment: i.e., allocate/align each data item according to the rules required for

the EBCDIC character set by adding the “IBM” option to the QINDEX FILE directive.

QINDEX Reference I-QU PLUS-1 Programmer Reference

18-6 KMSYS Worldwide, Inc.

The allocation rules are defined below:

Data Type UNISYS 2200 Allocation IBM 360/370 Allocation

DISPLAY 9 bits per character

(quarter word aligned)

9 bits per character

(quarter word aligned)

COMP 1-2 digits, 9 bits

3-5 digits, 18 bits

6-7 digits, 27 bits

8-10 digits, 36 bits

11-13 digits, 45 bits

14-15 digits, 54 bits

16-18 digits, 63 bits

(quarter word aligned)

1-4 digits, 18 bits

5-9 digits, 36 bits

10-18 digits, 72 bits

(quarter word aligned)

COMP-1 36 bits

(word aligned)

36 bits

(quarter word aligned)

COMP-2 72 bits

(word aligned)

72 bits

(quarter word aligned)

COMP-3 9 bits per digit

(quarter word aligned)

1 digit 9 bits

2-3 digits 18 bits

4-5 digits 27 bits

6-7 digits 36 bits

8-9 digits 45 bits

10-11 digits 54 bits

12-13 digits 63 bits

14-15 digits 72 bits

16-17 digits 81 bits

18 digits 90 bits

(quarter word aligned)

Table 18-1: QINDEX Data Allocations

18.4 Building an Application Definition

The following example builds a new application Data Item Index file from the base

subschema and schema, applies redefinitions from the S$PROC element, adds more

redefinitions to database records and finally adds PCIOS file definitions. The Data Item

Index File built may then be considered an entire application data definition to be used in

I-QU PLUS-1 applications.

@ASG,UP MFG*MFGQINDEX.

@IQINDX,IL MFG*MFGQINDEX.

INVOKE REQMTS-SUB IN MFG-SCHEMA FILE DMS*SCHEMAFILE

S$PROC

RECORD PART-MSTR

 01 PART-MSTR.

 *** THE FOLLOWING DEFINES THE FIRST 80

 *** POSITIONS OF THE PART MASTER RECORD FOR

 *** USE AS A HEADER (NOT DEFINED IN SCHEMA).

 05 PART-MSTR-HDR PIC X(80).

 05 FILLER PIC X(102).

FILE DLY-TRANS

 01 DLY-TRANS-REC.

I-QU PLUS-1 Programmer Reference QINDEX Reference

18-7 KMSYS Worldwide, Inc.

 05 DT-ACCOUNT-NUM PIC 9(10).

 05 DT-ACCOUNT-ALP REDEFINES DT-ACCOUNT-NUM.

 10 DT-DIVISION PIC 9(3).

 10 DT-REGION PIC 9(3).

 10 DT-SERIAL PIC 9(5).

 05 DT-CTGY-CODE PIC X.

 05 DT-TRANS-CODE PIC X.

 05 DT-AMOUNT PIC S9(5)V99 COMP.

@EOF

The proper sequence for using the sample data item index in an I-QU PLUS-1 application

program is as follows:

INVOKE REQMTS-SUB IN MFG-SCHEMA FOR MT NX

INDEX MFG*MFGQINDEX.

DEFINE F DLY-TRANS SEQ 16,200

DEFINE RA DLY-TRANS AFTER PART-MSTR

...

The file name used in the DEFINE F directive must match the file name used when the

file was defined in QINDEX in order for I-QU PLUS-1 to detect record area offsets

automatically.

Once the application has been defined as shown here, any data item in any DMS 2200

record or non-DMS file may be referenced without qualification. The referencing of DMS

2200 records or non-DMS files without qualification is possible because each item definition

has been linked to its DMS 2200 record or file name internally by QINDEX. When an item is

referenced in I-QU PLUS-1, the command editor automatically looks up the item’s record or

file entry to determine if the record or file has been relocated within the RDA via a DEFINE

RA directive. If an item name appears within more than one record or file within the

application, it will be necessary to qualify its reference.

18.5 Example

The following example shows the executions of QINDEX to build the data item index file

used in the examples shown throughout this guide. The file contains both DMS and PCIOS

data item definitions. In the execution, a FILE directive is supplied so that the I-QU PLUS-1

DEFINE RA (record area) directive can be used in the generated DBM code for InfoQuest.

@DELETE,C MKTG*CO-INDE.

FURPUR 31R5 (990611 1158:59) 1999 Sep 23 Thu 1545:20

END DELETE.

@ASG,UPV MKTG*CO-INDEX.

I:002333 ASG complete.

@QINDXA,LI MKTG*CO-INDEX.

QINDEX 6R5-0826 (Release 6R5) (990826 1425:41) 1999 Sep 23 Thu 1545:21

(C) Copyright 1985-1997 by KMSYS Worldwide, Inc. All Rights reserved.

This program licensed for use by KMSYS Worldwide, INC.

File:MKTG*????????CO-INDEX.???? already assigned

***Index will be INITIALIZED.

(00001)INVOKE DEMOSUB IN DEMOSCH FILE uds$$src*schabs

(00002)RECORD CUST-ADDR-REC

(00003) *** THE FOLLOWING REDEFINES TO CA-LOCKEY FIELD ***

(00004) 01 CUST-ADDR-REC-RE-DEF.

(00005) 05 CA-LOCKEY-REDEF.

(00006) 10 CA-STATE PIC XX.

(00007) 10 CA-CITY PIC X(18).

QINDEX Reference I-QU PLUS-1 Programmer Reference

18-8 KMSYS Worldwide, Inc.

(00008) 10 CA-ACCOUNT PIC 9(9).

(00009)FILE ORDERFILE

(00010) 01 ORDER-RECORD.

(00011) ** Secondary key, duplicates allowed **

(00012) 05 OR-CUSTKEY.

(00013) 10 OR-CUSTDIV PIC 9.

(00014) 10 OR-CUSTNUM PIC X(5).

(00015) 10 OR-CUSTSHIPTO PIC 999.

(00016) ** Primary key **

(00017) 05 OR-ORDER-IDENT.

(00018) 10 OR-ORDER-LOC PIC 99.

(00019) 10 OR-ORDER-KEY PIC X(7).

(00020) 10 OR-SHIP-LOC PIC 99.

(00021) 05 OR-ORDER-TYPE-CODE PIC X.

(00022) 05 OR-PRODLINE-CODE PIC X.

(00023) 05 OR-ENTRY-DATE.

(00024) 10 OR-ENTRY-MO PIC XX.

(00025) 10 OR-ENTRY-DA PIC XX.

(00026) 10 OR-ENTRY-YR PIC XX.

(00027) 05 OR-BUYER.

(00028) 10 OR-BYPASS PIC X.

(00029) 10 FILLER PIC X(10).

(00030) 05 OR-PURCHASE-ORD PIC X(8).

(00031) 05 OR-REQ-SHIPDATE PIC X(6).

(00032) 05 OR-SHIP-VIA PIC X(11).

(00033) 05 OR-CREDIT-HOLD PIC X.

(00034) 05 OR-HOLD-CODE PIC X.

(00035) 05 OR-INVOICE-CODE PIC X.

(00036) 05 OR-BOL-PRT-CODE PIC X.

(00037) 05 OR-PAY-METHOD-CODE PIC XXX.

(00038) 05 OR-WORKORD-CODE PIC X.

(00039) 05 OR-SPECIAL-TERMS PIC X(20).

(00040) 05 OR-TERMS.

(00041) 10 OR-TERM-CODE PIC X.

(00042) 10 OR-TERM-PER PIC V9(4) COMP.

(00043) 10 OR-TERM-DATE-DAYS PIC 9(6).

(00044) 05 OR-DELETE-FLAG PIC X.

(00045) 05 OR-INPROCESS-HOLD PIC X.

(00046) 05 FILLER PIC XX.

(00047) 05 OR-ACTUAL-SHIP-DATE.

(00048) 10 OR-SHIP-YR PIC XX.

(00049) 10 OR-SHIP-MO PIC XX.

(00050) 10 OR-SHIP-DA PIC XX.

(00051) 05 OR-PIECES PIC 9(5) COMP.

(00052) 05 FILLER PIC XX.

(00053) 05 OR-WEIGHT PIC 9(7) COMP.

(00054) 05 OR-SHIP-FEE PIC 9(5)V99 COMP.

(00055) 05 OR-TOT-CHARGES PIC 9(6)V99 COMP.

(00056) 05 OR-TOT-CLC PIC 9(6)V99 COMP.

(00057) 05 OR-DISCOUNT PIC 9(5)V99 COMP.

(00058) 05 OR-CREDIT-REL-DATE.

(00059) 10 OR-CREL-YR PIC XX.

(00060) 10 OR-CREL-MO PIC XX.

(00061) 10 OR-CREL-DA PIC XX.

(00062) 05 OR-WORKORD-PRT-DATE.

(00063) 10 OR-WKORD-PRT-YR PIC XX.

(00064) 10 OR-WKORD-PRT-MO PIC XX.

I-QU PLUS-1 Programmer Reference QINDEX Reference

18-9 KMSYS Worldwide, Inc.

(00065) 10 OR-WKORD-PRT-DA PIC XX.

(00066) 05 OR-STATE-TAX PIC S9(4)V99 COMP.

(00067) 05 OR-CITY-TAX PIC S9(4)V99 COMP.

(00068) 05 OR-COUNTY-TAX PIC S9(4)V99 COMP.

(00069) 05 OR-CREDIT-USERID PIC X(8).

(00070) 05 OR-NBR-PALLETS PIC S9(2) COMP.

(00071) 05 OR-PALLET-CHG PIC S9(3)V99 COMP.

(00072) 05 OR-TOT-PALLET-COST PIC S9(5)V99 COMP.

(00073) 05 OR-AUTHDLR-CODE PIC X.

(00074) 05 OR-LINE-COUNT PIC 9(10) COMP.

(00075) 05 OR-ORDER-LINE-DATA OCCURS 1 TO 50

(CONT.) DEPENDING ON OR-LINE-COUNT.

(00076) *** Order line item data ***

(00077) 10 OR-PRODUCT PIC X(6).

(00078) 10 OR-TYPE-ORD-CODE PIC X.

(00079) 10 OR-QUANTITY PIC S9(5) COMP.

(00080) 10 OR-UNIT-PRICE PIC 9(5)V99 COMP.

(00081) 10 OR-DESC PIC X(25).

(00082) 10 OR-LINE-WEIGHT PIC 9(5)V99 COMP.

(00083) 10 OR-PACKAGE PIC X(8).

(00084) 10 OR-PRICE-CODE PIC XX.

(00085) 10 OR-BOL-KEY PIC 999 COMP.

(00086) 10 OR-TAX-CODE PIC X.

(00087) 10 OR-REG-CODE PIC X.

(00088) 10 OR-SHIP-QTY PIC 9(5) COMP.

(00089) 10 OR-BILL-ONLY-CODE PIC X.

(00090) 10 OR-PRICE-CHANGE PIC X.

(00091) 10 OR-LAST-DATE PIC X(6).

(00092) 10 OR-PRIORITY PIC X.

(00093) 10 OR-EXCEPTION-SW PIC X.

(00094) 10 OR-SUB-ITEM PIC X(6).

(00095)FILE CUSTFILE

(00096) 01 CUSTORMER-MASTER-REC.

(00097) ** Primary key **

(00098) 05 CM-ACCOUNT PIC X(9).

(00099) ** Secondary key, duplicates allowed **

(00100) 05 CM-LOCKEY.

(00101) 10 CM-STATE PIC XX.

(00102) 10 CM-CITY PIC X(18).

(00103) 05 CM-CUSTNAME PIC X(33).

(00104) 05 CM-ADDR1 PIC X(30).

(00105) 05 CM-ADDR2 PIC X(30).

(00106) 05 CM-ADDR3 PIC X(30).

(00107) 05 CM-ZIP PIC X(9).

(00108) 05 CM-TELEPHONE.

(00109) 10 CM-AREACODE PIC XXX.

(00110) 10 CM-EXCHANGE PIC XXX.

(00111) 10 CM-TELNUM PIC XXXX.

.....End of QINDEX processing.

**

*** Date Item Index File List ***

**

(Subschema names and codes listed)

<<< Schema/Subschema >>>

DEMOSCH DEMOSUB SCHEMA/SUBSCHEMA

******* COUNT 0000000001

QINDEX Reference I-QU PLUS-1 Programmer Reference

18-10 KMSYS Worldwide, Inc.

<<< Areas >>>

DEMO-ADDR AREA CODE: 00001

DEMO-CKEY AREA CODE: 00003

DEMO-INDX AREA CODE: 00002

DEMO-ORD AREA CODE: 00004

******* COUNT 0000000004 remove

<<< Records >>>

CUST-ADDR-REC RECORD CODE:00002

CUST-KEY-REC RECORD CODE:00001

ORDER-COMMENT-REC RECORD CODE:00004

ORDER-HEADER-REC RECORD CODE:00003

ORDER-LINE-REC RECORD CODE:00005

******* COUNT 0000000005

<<< Sets >>>

CUST-KEY-ADDR-SET SET CODE: 00001

CUST-ORD SET CODE: 00004

ORDH-CMT SET CODE: 00003

ORDH-LINE SET CODE: 00002

******* COUNT 0000000004

<<< Database Datanames >>>

AREA-DEMO-CKEY DBDN CODE: 00002

AREA-DEMO-ORD DBDN CODE: 00003

SH-MISC-ANAME DBDN CODE: 00001

******* COUNT 0000000003

<<< Files >>>

CUSTFILE FILE CODE: 04098

ORDERFILE FILE CODE: 04097

******* COUNT 0000000002

<<< Data Items >>>

IX|ITEM NAME | RDA REF |DATA TYPE|DEC POS|REC/FILE COD

––|–––––––––––––––––––––––––––––––|----------––-|---------|----–--|-----–––––––

18:CA-ACCOUNT (00021,00009) UN9 00002

17:CA-ADDR1 (00063,00030) A9 00002

17:CA-ADDR2 (00093,00030) A9 00002

17:CA-ADDR3 (00123,00030) A9 00002

17:CA-AREACODE (00162,00003) A9 00002

16:CA-CITY (00003,00018) 00002

17:CA-CUSTNAME (00030,00033) A9 00002

17:CA-EXCHANGE (00165,00003) A9 00002

17:CA-LOCKEY (00001,00029) A9 00002

16:CA-LOCKEY-REDEF (00001,00029) 00002

16:CA-STATE (00001,00002) 00002

17:CA-TELEPHONE (00162,00010) A9 00002

17:CA-TELNUM (00168,00004) A9 00002

17:CA-ZIP (00153,00009) A9 00002

00:CK-CHG-TIME (00043,00004) UB9 00001

17:CK-CUST-KEY (00001,00009) A9 00001

17:CK-NAME (00010,00033) A9 00001

16:CM-ACCOUNT (00001,00009) 04098

16:CM-ADDR1 (00063,00030) 04098

I-QU PLUS-1 Programmer Reference QINDEX Reference

18-11 KMSYS Worldwide, Inc.

16:CM-ADDR2 (00093,00030) 04098

16:CM-ADDR3 (00123,00030) 04098

16:CM-AREACODE (00162,00003) 04098

16:CM-CITY (00012,00018) 04098

16:CM-CUSTNAME (00030,00033) 04098

16:CM-EXCHANGE (00165,00003) 04098

16:CM-LOCKEY (00010,00020) 04098

16:CM-STATE (00010,00002) 04098

16:CM-TELEPHONE (00162,00010) 04098

16:CM-TELNUM (00168,00004) 04098

16:CM-ZIP (00153,00009) 04098

17:CUST-ADDR-REC (00001,00180) A9 00002

16:CUST-ADDR-REC-RE-DEF (00001,00029) 00002

17:CUST-KEY-REC (00001,00048) A9 00001

16:CUSTORMER-MASTER-REC (00001,00171) 04098

17:OC-BOL-TYPE (00082,00001) A9 00004

17:OC-COMMENT (00001,00080) A9 00004

17:OC-TYPE (00081,00001) A9 00004

17:OH-ACTUAL-SHIP-DATE (00106,00006) A9 00003

17:OH-AUTHDLR-CODE (00168,00001) A9 00003

17:OH-BOL-PRT-CODE (00068,00001) A9 00003

17:OH-BUYER (00029,00011) A9 00003

17:OH-BYPASS (00029,00001) A9 00003

04:OH-CITY-TAX (00148,00003) SB9 02 00003

04:OH-COUNTY-TAX (00151,00003) SB9 02 00003

17:OH-CREDIT-HOLD (00065,00001) A9 00003

17:OH-CREDIT-REL-DATE (00133,00006) A9 00003

17:OH-CREDIT-USERID (00154,00008) A9 00003

17:OH-CREL-DA (00137,00002) A9 00003

17:OH-CREL-MO (00135,00002) A9 00003

17:OH-CREL-YR (00133,00002) A9 00003

18:OH-CUSTDIV (00001,00001) UN9 00003

17:OH-CUSTKEY (00001,00009) A9 00003

17:OH-CUSTNUM (00002,00005) A9 00003

18:OH-CUSTSHIPTO (00007,00003) UN9 00003

17:OH-DELETE-FLAG (00102,00001) A9 00003

03:OH-DISCOUNT (00130,00003) UB9 02 00003

17:OH-ENTRY-DA (00025,00002 A9 00003

17:OH-ENTRY-DATE (00023,00006) A9 00003

17:OH-ENTRY-MO (00023,00002) A9 00003

17:OH-ENTRY-YR (00027,00002) A9 00003

17:OH-HOLD-CODE (00066,00001) A9 00003

17:OH-INPROCESS-HOLD (00103,00001) A9 00003

17:OH-INVOICE-CODE (00067,00001) A9 00003

01:OH-NBR-PALLETS (00162,00001) COMP 00003

17:OH-ORDER-IDENT (00010,00011) A9 00003

17:OH-ORDER-KEY (00012,00007) A9 00003

18:OH-ORDER-LOC (00010,00002) UN9 00003

17:OH-ORDER-TYPE-CODE (00021,00001) A9 00003

04:OH-PALLET-CHG (00163,00002) SB9 02 00003

17:OH-PAY-METHOD-CODE (00069,00003) A9 00003

00:OH-PIECES (00112,00002) UB9 00003

17:OH-PRODLINE-CODE (00022,00001) A9 00003

17:OH-PURCHASE-ORD (00040,00008) A9 00003

17:OH-REQ-SHIPDATE (00048,00006) A9 00003

17:OH-SHIP-DA (00110,00002) A9 00003

03:OH-SHIP-FEE (00119,00003) UB9 02 00003

QINDEX Reference I-QU PLUS-1 Programmer Reference

18-12 KMSYS Worldwide, Inc.

18:OH-SHIP-LOC (00019,00002) UN9 00003

17:OH-SHIP-MO (00108,00002) A9 00003

17:OH-SHIP-VIA (00054,00011) A9 00003

17:OH-SHIP-YR (00106,00002) A9 00003

17:OH-SPECIAL-TERMS (00073,00020) A9 00003

04:OH-STATE-TAX (00145,00003) SB9 02 00003

17:OH-TERM-CODE (00093,00001) A9 00003

18:OH-TERM-DATE-DAYS (00096,00006) UN9 00003

03:OH-TERM-PER (00094,00002) UB9 04 00003

17:OH-TERMS (00093,00009) A9 00003

03:OH-TOT-CHARGES (00122,00004) UB9 02 00003

03:OH-TOT-CLC (00126,00004) UB9 02 00003

04:OH-TOT-PALLET-COST (00165,00003) SB9 02 00003

00:OH-WEIGHT (00116,00003) UB9 00003

17:OH-WKORD-PRT-DA (00143,00002) A9 00003

17:OH-WKORD-PRT-MO (00141,00002) A9 00003

17:OH-WKORD-PRT-YR (00139,00002) A9 00003

17:OH-WORKORD-CODE (00072,00001) A9 00003

17:OH-WORKORD-PRT-DATE (00139,00006) A9 00003

17:OL-BILL-ONLY-CODE (00057,00001) A9 00005

00:OL-BOL-KEY (00051,00002) UB9 00005

17:OL-DESC (00013,00025) A9 00005

17:OL-EXCEPTION-SW (00066,00001) A9 00005

17:OL-LAST-DATE (00059,00006) A9 00005

17:OL-PACKAGE (00041,00008) A9 00005

17:OL-PRICE-CHANGE (00058,00001) A9 00005

17:OL-PRICE-CODE (00049,00002) A9 00005

17:OL-PRIORITY (00065,00001) A9 00005

17:OL-PRODUCT (00001,00006) A9 00005

01:OL-QUANTITY (00008,00002) COMP 00005

17:OL-REG-CODE (00054,00001) A9 00005

00:OL-SHIP-QTY (00055,00002) UB9 00005

17:OL-SUB-ITEM (00067,00006) A9 00005

17:OL-TAX-CODE (00053,00001) A9 00005

17:OL-TYPE-ORD-CODE (00007,00001) A9 00005

03:OL-UNIT-PRICE (00010,00003) UB9 02 00005

03:OL-WEIGHT (00038,00003) UB9 02 00005

16:OR-ACTUAL-SHIP-DATE (00106,00006) 04097

16:OR-AUTHDLR-CODE (00168,00001) 04097

16:OR-BILL-ONLY-CODE (00229,00001) 04097

00:OR-BOL-KEY (00223,00002) UB9 04097

16:OR-BOL-PRT-CODE (00068,00001) 04097

16:OR-BUYER (00029,00011) 04097

16:OR-BYPASS (00029,00001) 04097

01:OR-CITY-TAX (00148,00003) COMP 02 04097

01:OR-COUNTY-TAX (00151,00003) COMP 02 04097

16:OR-CREDIT-HOLD (00065,00001) 04097

16:OR-CREDIT-REL-DATE (00133,00006) 04097

16:OR-CREDIT-USERID (00154,00008) 04097

16:OR-CREL-DA (00137,00002) 04097

16:OR-CREL-MO (00135,00002) 04097

16:OR-CREL-YR (00133,00002) 04097

18:OR-CUSTDIV (00001,00001) UN9 04097

16:OR-CUSTKEY (00001,00009) 04097

16:OR-CUSTNUM (00002,00005) 04097

18:OR-CUSTSHIPTO (00007,00003) UN9 04097

16:OR-DELETE-FLAG (00102,00001) 04097

I-QU PLUS-1 Programmer Reference QINDEX Reference

18-13 KMSYS Worldwide, Inc.

16:OR-DESC (00185,00025) 04097

00:OR-DISCOUNT (00130,00003) UB9 02 04097

16:OR-ENTRY-DA (00025,00002) 04097

16:OR-ENTRY-DATE (00023,00006) 04097

16:OR-ENTRY-MO (00023,00002) 04097

16:OR-ENTRY-YR (00027,00002) 04097

16:OR-EXCEPTION-SW (00238,00001) 04097

16:OR-HOLD-CODE (00066,00001) 04097

16:OR-INPROCESS-HOLD (00103,00001) 04097

16:OR-INVOICE-CODE (00067,00001) 04097

16:OR-LAST-DATE (00231,00006) 04097

00:OR-LINE-COUNT (00169,00004) UB9 04097

00:OR-LINE-WEIGHT (00210,00003) UB9 02 04097

01:OR-NBR-PALLETS (00162,00001) COMP 04097

16:OR-ORDER-IDENT (00010,00011) 04097

16:OR-ORDER-KEY (00012,00007) 04097

16:OR-ORDER-LINE-DATA (00173,00072) 04097

18:OR-ORDER-LOC (00010,00002) UN9 04097

16:OR-ORDER-TYPE-CODE (00021,00001) 04097

16:OR-PACKAGE (00213,00008) 04097

01:OR-PALLET-CHG (00163,00002) COMP 02 04097

16:OR-PAY-METHOD-CODE (00069,00003) 04097

00:OR-PIECES (00112,00002) UB9 04097

16:OR-PRICE-CHANGE (00230,00001) 04097

16:OR-PRICE-CODE (00221,00002) 04097

16:OR-PRIORITY (00237,00001) 04097

16:OR-PRODLINE-CODE (00022,00001) 04097

16:OR-PRODUCT (00173,00006) 04097

16:OR-PURCHASE-ORD (00040,00008) 04097

01:OR-QUANTITY (00180,00002) COMP 04097

16:OR-REG-CODE (00226,00001) 04097

16:OR-REQ-SHIPDATE (00048,00006) 04097

16:OR-SHIP-DA (00110,00002) 04097

00:OR-SHIP-FEE (00119,00003) UB9 02 04097

18:OR-SHIP-LOC (00019,00002) UN9 04097

16:OR-SHIP-MO (00108,00002) 04097

00:OR-SHIP-QTY (00227,00002) UB9 04097

16:OR-SHIP-VIA (00054,00011) 04097

16:OR-SHIP-YR (00106,00002) 04097

16:OR-SPECIAL-TERMS (00073,00020) 04097

01:OR-STATE-TAX (00145,00003) COMP 02 04097

16:OR-SUB-ITEM (00239,00006) 04097

16:OR-TAX-CODE (00225,00001) 04097

16:OR-TERM-CODE (00093,00001) 04097

18:OR-TERM-DATE-DAYS (00096,00006) UN9 04097

00:OR-TERM-PER (00094,00002) UB9 04 04097

16:OR-TERMS (00093,00009) 04097

00:OR-TOT-CHARGES (00122,00004) UB9 02 04097

00:OR-TOT-CLC (00126,00004) UB9 02 04097

01:OR-TOT-PALLET-COST (00165,00003) COMP 02 04097

16:OR-TYPE-ORD-CODE (00179,00001) 04097

00:OR-UNIT-PRICE (00182,00003) UB9 02 04097

00:OR-WEIGHT (00116,00003) UB9 04097

16:OR-WKORD-PRT-DA (00143,00002) 04097

16:OR-WKORD-PRT-MO (00141,00002) 04097

16:OR-WKORD-PRT-YR (00139,00002) 04097

16:OR-WORKORD-CODE (00072,00001) 04097

QINDEX Reference I-QU PLUS-1 Programmer Reference

18-14 KMSYS Worldwide, Inc.

16:OR-WORKORD-PRT-DATE (00139,00006) 04097

17:ORDER-COMMENT-REC (00001,00084) A9 00004

17:ORDER-HEADER-REC (00001,00172) A9 00003

17:ORDER-LINE-REC (00001,00072) A9 00005

16:ORDER-RECORD (00001,03772) 04097

******* COUNT 0000000195

**** End of Data Item Index List ****

I-QU PLUS-1 Programmer Reference QINDEX Reference

18-- 1 - KMSYS Worldwide, Inc.

Index
$ALPHA, 6-4, 9-29

$DATE, 9-10, 9-12

$HIVALS, 6-4, 9-29, 9-36

$LOVALS, 6-4, 9-29, 9-36

$NUM, 6-4, 9-29

$PBUFF, 6-4, 9-19, 9-36

$SPACES, 6-4, 9-29, 9-36

$TAB, 6-1

? directive, 8-4

@JUMP, 9-44

@SETC, 9-43

@START, 9-43

@TEST, 9-44

+ symbol, 9-19

A18, 3-2

A6, 3-2, 9-38

A9, 3-2, 9-38

Abbreviations, 16-1

Abort option (A), 4-1

ACCEPT command, 9-2

Access modes (PCIOS/SFS), 10-2

ACQUIRE command (DMS), 12-12

ADD directive, 8-1

ALPHA, 6-4, 9-29

Alphanumeric literals, 2-2

Alphanumeric string variables, 5-1

Alternate record area, 7-1

AND, 9-29

Application Definitions, 18-6

Applications, 9-8

area key, 9-3

AREA-KEY, 6-1, 6-2

area-name, 12-11

AREA-NAME, 6-1

ASCII packed, 3-3

Batch mode option (B), 4-1

Batch option (B), 18-3

BIS DTM, 15-1

BITMERG command, 9-3

BITSPLIT command, 9-4

braces, 1-3

BREAK command, 9-5, 9-21

BRKPT, 9-31

Building an Application Definition, 18-6

Bytes required, 3-3

C-AKEY, 6-1

CALC simulation, 12-4

CALSIM, 6-3

CALSIM command (DMS), 12-14

C-AREA-NAME, 6-1

CASE, 9-37

CASE command, 9-6

C-DBK, 6-1

C-DBP, 6-1

CDELETE command (PCIOC/SFS), 10-6

Chapter descriptions, 1-1

CLEAR directive, 8-1

CLEARSCREEN command, 9-7

CLOSE, 9-31

CLOSE command (BIS DTM), 15-4

CLOSE command (DBDUMP), 12-7

CLOSE command (DMS), 12-15

CLOSE command (PCIOS/SFS), 10-7

Column limits, 2-3

Column specification, 9-19

Command abbreviations, 16-1

Command Editor/Executor, 2-1

Command Line Format, 2-2

Commands, 2-1

Commands, BIS DTM

CLOSE, 15-4

OPEN, 15-5

READ, 15-6

WRITE, 15-7

Commands, DBDUMP

CLOSE, 12-7

OPEN, 12-8

READ, 12-9

WRITE, 12-10

Commands, DIO

QINDEX Reference I-QU PLUS-1 Programmer Reference

18-- 2 - KMSYS Worldwide, Inc.

DIO, 13-2

Commands, DMS

ACQUIRE, 12-12

CALSIM, 12-14

CLOSE, 12-15

DELETE, 12-16

DEPART, 12-17

DISPLAY, 12-18

FETCH1, 12-19

FETCH2, 12-20

FETCH3, 12-21

FETCH4, 12-22

FETCH5, 12-23

FETCH6, 12-24

FETCH7, 12-25

FIND1, 12-19

FIND2, 12-20

FIND3, 12-21

FIND4, 12-22

FIND5, 12-23

FIND6, 12-24

FIND7, 12-25

FREE, 12-26

IF, 12-27

IMPART, 12-28

INSERT, 12-29

KEEP, 12-30

MODIFY, 12-31

OPEN, 12-32

REMOVE, 12-33

SET CURRENT, 12-34

SET DBDN, 12-36

SET NON-FATAL, 12-37

STORE, 12-38

SUPPRESS clause, 12-39

Commands, general

ACCEPT, 9-2

BITSPLIT, 9-4

BREAK, 9-5

CASE, 9-6

CLEARSCREEN, 9-7

CONNECT, 9-8

CSF, 9-9

DATE, 9-10

DATESET, 9-12

DECIMAL, 9-17

DISCONNECT, 9-18

DISPLAY, 9-19

DO, 9-21

DUMP, 9-23

EDIT, 9-24

FACERR, 9-27

GO, 9-28

IF, 9-29

NITMERGE, 9-3

PCONTROL, 9-31

ROUND, 9-33

SCAN, 9-34

SET, 9-36

SHIFT, 9-41

STOP, 9-42

SWGET, 9-43

SWSET, 9-44

TABS, 9-45

TIME, 9-46

TRACE, 9-47

TRANSFER, 9-48

TRIMDISP, 9-49

TRIMEDIT, 9-50

WAIT, 9-51

WILDCARD, 9-52

Commands, PCIOS/SFS

CDELETE, 10-6

CLOSE, 10-7

OPEN, 10-8

READ, 10-10

READNEXT, 10-11

REWRITE, 10-12

START, 10-13

WRITE, 10-14

Commands, RDMS

RDMS, 14-2

RDMS+, 14-4

Commands, SORT

I-QU PLUS-1 Programmer Reference QINDEX Reference

18-- 3 - KMSYS Worldwide, Inc.

RELEASE, 11-2

RETURN, 11-3

SORT, 11-4

Comments, 2-3

COMP, 3-2, 9-38

COMP-1, 3-2

COMP-2, 3-2

COMP4, 9-38

COMP-4, 3-2

COMPILE directive, 8-1

Computational, 3-3

Conditional expression, 9-29

Conditional expressions, 9-21

CONNECT, 9-18

CONNECT command, 9-8

CONSOLE, 9-31

Contents, 1-1

Continuations, 2-3

CONV directive, 8-2

Conversation mode option (C), 4-1

Convert dates, 9-10, 9-12

Convert time, 9-46

C-O-R, 6-1

C-O-T, 6-2

C-PAGE, 6-2

C-REC, 6-2

CSF command, 9-9

Current time, 9-46

CURRPCOL, 9-37

Data name reference, 3-4

Data Storage Area (DSA), 3-6

Data types, 3-2

database key, 9-3, 9-4

DATE, 6-2, 9-10

DATE command, 9-10

DATE-NUM, 6-2, 9-10

DATESET command, 9-12

DAY, 6-2, 9-10

DBDUMP file, 6-2, 12-6

DBDUMP file description, 17-1

DECIMAL, 9-37

DECIMAL command, 9-17

Decimal numeric variables, 5-1

Decimal precision, 5-1, 7-3

DECPOS, 9-38

DEF A, 9-38

DEF FP, 9-38

DEF N, 9-38

DEFINE A, 5-1

DEFINE C directive (DMS), 12-4

DEFINE F (PCIOS/SFS), 10-3

DEFINE F directive (BIS DTM), 15-1

DEFINE F directive (DBDUMP), 12-6

DEFINE F directive (DIO), 13-1

DEFINE FP, 5-2

DEFINE K, 5-2

DEFINE N, 5-1

DEFINE RA, 7-1

DEFINE RA (BIS DTM), 15-3

DEFINE RDA, 7-3

Define record field, 7-3

DEFINE SUB, 7-4

DELETE command (DMS), 12-16

Demand mode option (D), 4-1

Demand option (D), 18-3

DEPART, 6-3

DEPART command (DMS), 12-17

DIO, 13-1

DIO command (DIO), 13-2

DIRECT, 10-3, 10-8

Direct I/O, 13-1

Direct References, 3-1

Directives, 2-1

?, 8-4

ADD, 8-1

CLEAR, 8-1

COMPILE, 8-1

CONV, 8-2

DEFINE A, 5-1

DEFINE C, 12-4

DEFINE F (BIS DTM), 15-1

DEFINE F (DBDUMP), 12-6

DEFINE F (DIO), 13-1

DEFINE F (PCIOS/SFS), 10-3

QINDEX Reference I-QU PLUS-1 Programmer Reference

18-- 4 - KMSYS Worldwide, Inc.

DEFINE FP, 5-2

DEFINE K, 5-2

DEFINE N, 5-1

DEFINE RA, 7-1

DEFINE RA (BIS DTM), 15-3

DEFINE RDA, 7-3

DEFINE SUB, 7-4

EXIT, 8-2

FILE (QINDEX), 18-5

INDEX, 8-2

INIT, 8-2

INPUT, 8-2

INVOKE (DMS), 12-1

INVOKE (QINDEX), 18-4

LISTOFF, 8-2

LISTON, 8-3

LOAD, 8-3

OBJECT, 8-3

PRINTER, 8-3

RECORD (QINDEX), 18-4

RUN, 8-3

S$PROC (QINDEX), 18-4

SAVE, 8-4

Disable II-key-in option (V), 4-1

DISCONNECT command, 9-18

DISP, 3-2, 9-38

DISP-1, 3-2

DISP-2, 3-2

DISPLAY, 6-4

DISPLAY command, 9-19

DISPLAY command (DMS), 12-18

Displaying numbers, 9-24, 9-50

Displays, 9-49

DML Commands, 12-11

DMS, 12-1

DMS test mode option (O), 4-1

DMS training mode option (Y), 4-1

DO command, 9-21

Documents, 1-2

Double quotes, 2-2

double vertical bars, 1-3

DTM, 15-1

DUMP command, 9-23

Dump object table option (K), 4-1

DWTIME$, 9-10

DYNAMIC, 10-8

ECHO, 9-31

Echo commands option (E), 4-1

EDIT, 6-4

EDIT commands, 9-24

Edits, 9-50

EJECT, 9-31

Ellipsis, 1-3

ERROR-NUM, 6-2, 9-15

Errors

Date conversions, 9-15

PCIOS, 10-15

Examine a string, 9-34

EXEC Applications, 9-8, 9-18

EXEC CSF submissions, 9-9

EXIT directive, 8-2

EXTEND, 10-8

FACERR command, 9-27

FETCH command (DMS), 12-19

FETCH1 command (DMS), 12-19

FETCH2 command (DMS), 12-20

FETCH3 command (DMS), 12-21

FETCH4 command (DMS), 12-22

FETCH5 command (DMS), 12-23

FETCH6 command (DMS), 12-24

FETCH7 command (DMS), 12-25

Field definition, 7-3

FIELDATA option (F), 18-3

FIELDATA packed, 3-3

FILE directive (QINDEX), 18-5

File types, 2-3

Filename, 7-1, 9-48

FIND command (DMS), 12-19

FIND1 command (DMS), 12-19

FIND2 command (DMS), 12-20

FIND3 command (DMS), 12-21

FIND4 command (DMS), 12-22

FIND5 command (DMS), 12-23

FIND6 command (DMS), 12-24

I-QU PLUS-1 Programmer Reference QINDEX Reference

18-- 5 - KMSYS Worldwide, Inc.

FIND7 command (DMS), 12-25

Floating-point literals, 2-2

Floating-point numeric variables, 5-2

Flow of control, 9-28

Formats

Commands vs. Directives, 2-2

FP1, 3-2, 9-38

FP2, 3-2, 9-38

FREE command (DMS_, 12-26

G-AKEY, 6-2

G-AREA-NAME, 6-2

Get current time, 9-46

GO commands, 9-28

G-PAGE, 6-2

G-REC, 6-2

G-RECORD-NAME, 6-2

Gregorian, 9-10

Gregorian date, 6-2

Guides, 1-2

HH:MM:SS.DDD, 6-3

HIVALS, 6-4, 9-29, 9-36

IF command, 9-29

IF command (DMS), 12-27

IICODE, 6-2

II-key-in disable option (V), 4-1

IMPART command (DMS), 12-28

IMPART-DEPART, 6-3

INDEX directive, 8-2

INDEXED, 10-3

Indexing, 3-1, 3-4

INIT directive, 8-2

Initialize option (I), 18-3

INPUT, 10-8

INPUT directive, 8-2

Input mode, 2-2

Input mode option (I), 4-1

INSERT (DMS), 12-29

Interactive option (C), 4-1

INVOKE considerations, 12-3

INVOKE directive (DMS), 12-1

INVOKE directive (QINDEX), 18-4

I-QU processor call, 4-1

ISAM, 10-3

italicized words, 1-2

J-DAY, 6-3, 9-10

Julian, 9-10

Kanji variables, 5-2

KEEP command (DMS), 12-30

Keywords, 16-1

L$, 6-3

Labels, 2-2

LASTPCOL, 9-37

LENGTH, 9-38

List all option (L), 18-3

List only option (N), 18-3

List source option (S), 18-3

LISTOFF directive, 8-2

Listoff option (U), 4-1

LISTON directive, 8-3

LOAD directive, 8-3

LOCAL, 9-31

LOVALS, 6-4, 9-29, 9-36

Manuals, 1-2

MAPNUM, 3-2, 9-38

MODIFY command (DMS), 12-31

MONTH, 6-3, 9-10

MSPM, 6-3

Notation, 1-2

NUM, 6-4, 9-29

Numeric literals, 2-2

Numeric variables, 5-1

OBJECT directive, 8-3

Object program area, 3-6

Object program considerations, 8-5

Object table dump option (K), 4-1

OPEN command (BIS DTM), 15-5

OPEN command (DBDUMP), 12-8

OPEN command (DMS), 12-32

OPEN command (PCIOC/SFS), 10-8

OPTION, 9-31

Options

I-QU Processor call, 4-1

QINDEX Processor call, 18-3

OR, 9-29

QINDEX Reference I-QU PLUS-1 Programmer Reference

18-- 6 - KMSYS Worldwide, Inc.

Other References, 1-2

OUTPUT, 10-8

Overwrite option (O), 18-3

Packed decimal, 3-3

PAGE-NUM, 6-2

PBUFF, 6-4, 9-19, 9-36

PCIOS, 10-1

PCIOS errors, 10-15

PCONTROL command, 9-31

Preface, vii

Print buffer, 9-19

Print control, 9-31

PRINTER directive, 8-3

Procedures, 9-21

Processor call

I-QU, 4-1

QINDEX, 18-3

Program, 8-5

QINDEX, 14-5, 18-1

QINDEX example, 18-7

QINDEX processor call, 18-3

qualification, 3-4

Queue-alias, 7-1, 9-48

Quotes, 2-2

RANDOM, 10-8

RB-CODE, 6-3

RDA, 3-1

RDA Definitions (RDMS), 14-5

RDA Direct Reference

RDA named reference, 3-4

RDA variable reference, 3-5

RDMS, 14-1

RDMS command (RDMS), 14-2

RDMS RDA Definitions, 14-5

RDMS+ command (RDMS), 14-4

READ command (BIS DTM), 15-6

READ command (DBDUMP), 12-9

READ command (PCIOC/SFS), 10-10

READNEXT command (PCIOC/SFS), 10-11

REC$LEN, 6-3, 12-14

Record area, 7-1

Record Delivery Area, 3-1

Record Delivery Area (RDA), 7-3

RECORD directive (QINDEX), 18-4

Record level moves, 9-48

record-name, 12-11

Record-name, 7-1, 9-48

RECORD-NUM, 6-2

RELEASE command (SORT), 11-2

REMOVE command (DMS), 12-33

Required bytes, 3-3

RETURN command (SORT), 11-3

REWRITE command (PCIOC/SFS), 10-12

ROUND, 9-37

ROUND command, 9-33

RUN directive, 8-3

RUNID, 6-3

S$, 6-3

S$PROC directive (QINDEX), 18-4

SAVE directive, 8-4

SB6, 3-2, 9-38

SB9, 3-2, 9-38

SCAN command, 9-34

Search for a string, 9-34

SEQ, 10-3, 10-8

Set a field, 9-36

Set a variable, 9-36

SET command, 9-36

SET CURRENT command (DMS), 12-34

SET CURRENT DBP, 6-1

SET DBDN command (DMS), 12-36

SET NON-FATAL command (DMS), 12-37

set-name, 12-11

SFS, 10-1

SHIFT command, 9-41

Silence commands option (U), 4-1

Single quotes, 2-2

SN6, 3-2, 9-38

SN9, 3-2, 9-38

SORT, 7-1, 9-48, 11-1

SORT command, 11-4

SPACES, 6-4, 9-29, 9-36

Spooling, 9-31

Stage print buffer, 9-19

I-QU PLUS-1 Programmer Reference QINDEX Reference

18-- 7 - KMSYS Worldwide, Inc.

START commands (PCIOC/SFS), 10-13

STARTPOS, 9-37

STOP command, 9-42

STORE command (DMS), 12-38

Subscripting, 3-1, 3-4, 7-4

SUPPRESS clause (DMS), 12-39

SWGET command, 9-43

SWSET command, 9-44

Syntax Notation, 1-2

Tab insertion, 9-45

TAB insertion, 9-19

TABS command, 9-45

TAPE, 10-3

Test mode DMS option (O), 4-1

TIME, 6-3, 9-10, 9-46

TIME command, 9-46

TIME-MSPM, 6-3

TRACE command, 9-47

Training mode DMS option (Y), 4-1

TRANSFER command, 9-48

TRIMDISP, 6-4

TRIMDISP command, 9-49

TRIMEDIT, 6-4

TRIMEDIT command, 9-50

TRIMLEN, 9-37

TYPE, 9-38

UB6, 3-2, 9-38

UB9, 3-2, 9-38

UN6, 3-2, 9-38

UN9, 3-2, 9-38

underlined word, 1-3

UNTIL, 9-21

UPDATE, 10-8

UPPERCASE, 1-2

Usage modes (PCIOC/SFS), 10-2

Variable DSA, 3-6

Variable substitution, 3-5

Variables

Alphanumeric, 5-1

Floating-point, 5-2

Kanji, 5-2

Numeric, 5-1

vertical bar, 1-3

vertical bars, 1-3

WAIT command, 9-51

What is included?, 1-1

WHILE, 9-21

WILDCARD command, 9-52

Word reference option (W), 18-3

WRITE command (BIS DTM), 15-7

WRITE command (DBDUMP), 12-10

WRITE command (PCIOC/SFS), 10-14

X, 6-3

Y, 6-3

YEAR, 6-3, 9-10

YYYYDDD, 6-3

YYYYMMDD, 6-2

Z, 6-3

I-QU PLUS-1 Programmer Reference Feedback

 KMSYS Worldwide, Inc.

If you would like to help us make our documentation better, please take a few moments to

complete this form and return it to KMSYS Worldwide. We are always looking for ways to

improve our products and your feedback will help us reach our goal.

Name __

Company ___

Address __

City __ State/Province ________

Country ___ Zip/Mail Code _________

Document Name ____________________________________ OS Level _____________

KMSYS Worldwide Product ____________________________ Level ________________

Please rate the documentation on a scale of 1 to 5:

5 4 3 2 1

Complete      Incomplete

Accurate      Inaccurate

Usable      Unusable

Readable      Unreadable

Understandable      Unintelligible

Attractive      Unattractive

Excellent      Poor

What information did you expect to find that was omitted?

Is more information needed?  Yes  No. If yes, on what topic?

Did you find factual errors in the documentation?  Yes  No. If yes, please give page

number and description of the error.

If the documentation is difficult to understand, please specify page number and problem.

Is the documentation intimidating?  Yes  No.

Are the manuals:  Too long?  Too short?  About the right length?

Other suggestions or comments? (Use back of form if necessary.)

Feedback I-QU PLUS-1 Programmer Reference

(Additional Comments)

. Fold along dotted line.

P.O. Box 669695
Marietta, GA 30066

U.S.A.

Attn: Technical Documentation Section

	Table of Contents
	Chapter 1: Introduction
	1.1 Description of Chapters
	1.2 Additional Documentation
	1.3 Syntax Notation

	Chapter 2: General Information
	2.1 Basic Structure
	2.2 Modes of Operation
	2.3 Commands vs. Directives
	2.4 Command Line Format
	2.5 File Systems Accessed by I-QU PLUS-1

	Chapter 3: Internal Structure
	3.1 Record Delivery Area (RDA)
	3.1.1 Direct RDA Reference
	3.1.2 Item Name RDA Reference
	3.1.3 RDA Indexing and Subscripting
	3.1.4 Variable RDA Referencing

	3.2 Variable Data Storage Area (DSA)
	3.3 Object Program Area

	Chapter 4: Processor Call Format
	Chapter 5: Defining Variables
	5.1 Alphanumeric String Variables (DEFINE A)
	5.2 Decimal Numeric Variables (DEFINE N)
	5.3 Floating Point Numeric Variables (DEFINE FP)
	5.4 Kanji Variables (DEFINE K)

	Chapter 6: Reserved Words
	6.1 Reserved Variables
	6.2 Special Names

	Chapter 7: Record Delivery Area (RDA)
	7.1 Alternate Record Area Definition (DEFINE RA)
	7.2 Record Delivery Area Field Definition (DEFINE RDA)
	7.3 Subscript Variable Definition (DEFINE SUB)

	Chapter 8: Control Directives
	8.1 ADD
	8.2 CLEAR
	8.3 COMPILE
	8.4 CONV
	8.5 EXIT
	8.6 INDEX
	8.7 INIT
	8.8 INPUT
	8.9 LISTOFF
	8.10 LISTON
	8.11 LOAD
	8.12 OBJECT
	8.13 PRINTER
	8.14 RUN
	8.15 SAVE
	8.16 ?
	8.17 Object Program Considerations

	Chapter 9: General Procedural Commands
	9.1 ACCEPT
	9.2 BITMERGE
	9.3 BITSPLIT
	9.4 BREAK
	9.5 CASE
	9.6 CLEARSCREEN
	9.7 CONNECT
	9.8 CSF
	9.9 DATE
	9.10 DATESET
	9.11 DECIMAL
	9.12 DISCONNECT
	9.13 DISPLAY
	9.14 DO
	9.15 DUMP
	9.16 EDIT
	9.17 FACERR
	9.18 GO
	9.19 IF
	9.20 PCONTROL
	9.21 ROUND
	9.22 SCAN
	9.23 SET
	9.24 SHIFT
	9.25 STOP
	9.26 SWGET
	9.27 SWSET
	9.28 TABS
	9.29 TIME
	9.30 TRACE
	9.31 TRANSFER
	9.32 TRIMDISP
	9.33 TRIMEDIT
	9.34 WAIT
	9.35 WILDCARD

	Chapter 10: PCIOS and SFS 2200 File Interface
	10.1 PCIOS/SFS File Usage and Access Modes
	10.2 PCIOS/SFS File Definition (DEFINE F)
	10.3 CDELETE
	10.4 CLOSE
	10.5 OPEN
	10.6 READ
	10.7 READNEXT
	10.8 REWRITE
	10.9 START
	10.10 WRITE
	10.11 Special PCIOS Status Returned

	Chapter 11: SORT Interface
	11.1 RELEASE
	11.2 RETURN
	11.3 SORT

	Chapter 12: DMS 2200 Interface
	12.1 Subschema Invocation (INVOKE)
	12.2 INVOKE Considerations
	12.3 DMS 2200 CALC Routine Definition (DEFINE C)
	12.4 DBDUMP File
	12.4.1 DBDUMP File Definition (DEFINE F)
	12.4.2 CLOSE (DBDUMP)
	12.4.3 OPEN (DBDUMP)
	12.4.4 READ (DBDUMP)
	12.4.5 WRITE (DBDUMP)

	12.5 DML Commands
	12.6 ACQUIRE
	12.7 CALSIM
	12.8 CLOSE
	12.9 DELETE
	12.10 DEPART
	12.11 DISPLAY Database Error
	12.12 FETCH/FIND
	12.12.1 FETCH/FIND Format-1
	12.12.2 FETCH/FIND Format-2
	12.12.3 FETCH/FIND Format-3
	12.12.4 FETCH/FIND Format-4
	12.12.5 FETCH/FIND Format-5
	12.12.6 FETCH/FIND Format-6
	12.12.7 FETCH/FIND Format-7

	12.13 FREE
	12.14 IF (DML)
	12.15 IMPART
	12.16 INSERT
	12.17 KEEP
	12.18 MODIFY
	12.19 OPEN
	12.20 REMOVE
	12.21 SET CURRENT
	12.22 SET DBDN (Database Data Name)
	12.23 SET NON-FATAL (DML Errors)
	12.24 STORE
	12.25 SUPPRESS Clause

	Chapter 13: Direct I/O Access
	13.1 DIO (DEFINE F)
	13.2 DIO

	Chapter 14: RDMS 2200 Interface
	14.1 The RDMS Command
	14.2 The RDMS+ Command
	14.3 Automated RDA Definitions

	Chapter 15: BIS DTM Interface
	15.1 Queue-alias Definition (DEFINE F)
	15.2 Alternate Queue-alias Areas (DEFINE RA)
	15.3 CLOSE
	15.4 OPEN
	15.5 READ
	15.6 WRITE

	Chapter 16: Command and Keyword Abbreviations
	Chapter 17: DBDUMP File Description
	Chapter 18: QINDEX Reference
	18.1 Introduction
	18.2 QINDEX, General Information
	18.2.1 Input to QINDEX
	18.2.2 Output of QINDEX

	18.3 Running QINDEX
	18.3.1 QINDEX Processor Options
	18.3.2 QINDEX Directives
	18.3.2.1 INVOKE
	18.3.2.2 S$PROC
	18.3.2.3 RECORD
	18.3.2.4 FILE

	18.4 Building an Application Definition
	18.5 Example

	Index

